市場調査レポート

リチウムイオン二次電池用正極(カソード)材料:技術動向・市場予測

Cathode Material for Li-ion Secondary battery Technology Trend and Market Forecast (2012~2018)

発行 SNE Research 商品コード 195715
出版日 ページ情報 英文 334 Pages
納期: お問合せ
価格
本日の銀行送金レート: 1USD=102.06円で換算しております。

ご注意:当報告書は原文が韓国語のため、英訳が必要となる場合があります。納期については、当社までお問合せ下さい。

Back to Top
リチウムイオン二次電池用正極(カソード)材料:技術動向・市場予測 Cathode Material for Li-ion Secondary battery Technology Trend and Market Forecast (2012~2018)
出版日: 2014年05月19日 ページ情報: 英文 334 Pages
概要

2013年、世界で110,769トンのリチウムイオン二次電池(LIB)用正極(カソード)材料が消費されました。44.5% (49,257トン)のシェアを占めた中国が最大の消費国となり、以降、29.7% (32,850トン)の韓国、24.5% (27,125トン)の日本、0.5% (577トン)の米国、0.6% (710トン)の台湾が続いています。

当レポートでは、リチウムイオン二次電池(LIB)用正極(カソード)材料の市場について調査し、各種正極材料の概要、材料技術の開発動向、正極材料の製造プロセス、主要事業者とその取り組み、世界のLIB市場の予測、国・材料・セル製造業者別のLIB用正極材料の需要状況および市場成長予測などを詳細に渡ってまとめています。

第1章 正極(カソード)材料の技術動向・市場予測

  • イントロダクション
    • 開発状況
    • 設計基準
    • 求められる特性
  • 酸化物カソード材料
    • 層状化合物
    • スピネル化合物
    • かんらん石化合物
  • その他の正極材料
    • 硫黄ベース
    • フッ素ベース
    • ナトリウムベース
  • リファレンス

第2章 正極(カソード)材料の製造プロセス

  • 正極材料の製造プロセス
    • 混合
    • 焼成
    • 粉砕
    • 分類
    • 脱イオン
  • 前駆体製造プロセス
    • リアクター
    • リアクター後のプロセス
  • 正極材料の特性評価
    • 化学組成
    • 表面積
    • 粒子分布
    • タップ密度
    • 含水率
    • 残存炭酸リチウム
    • 熱解析
    • 粒子強度

第3章 正極(カソード)材料動向:企業別

  • 韓国
  • 日本

第4章 世界のリチウムイオン二次電池市場の予測

  • 世界のIT市場向け小型LIB市場の予測
  • 世界のEV市場向け中型LIB市場の予測
  • 世界のESS市場向け大型LIB市場の予測
  • 世界のLIB市場全体の予測

第5章 正極(カソード)材料市場の動向・予測

  • 正極市場の需要
    • 国別の需要状況
    • 材料別の需要状況
    • 材料・国別の需要状況
    • 材料・国別の需要比率
    • 電池製造業者の需要状況
    • タイプ別の需要状況
  • 正極材料の供給状況
    • 国別の供給状況
    • 製造業者別の市場状況
  • 正極材料の需要の変化:タイプ別
    • 年・国別の需要の変化の動向
    • 年・国別の市場の変化の動向
    • 年・電池製造業者別の需要の変化の動向
  • 正極材料の設備製造能力の状況
  • 正極材料のコスト動向
    • 価格構造
    • コスト動向:タイプ別
    • 鉱物市場の動向
  • ■図法

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次
Product Code: R130SB2014009

With growing concerns over the depletion of fossil fuel resources and environmental pollution, R&D on electric vehicles is gaining momentum. The global EV sales hit 1.67 million units in 2012 and are expected to grow at a 35% CAGR, reaching 102.5 million units by 2018.

In addition, growing interest in renewable energy drives R&D on energy storage systems to store electric energy generated from renewable energy sources effectively. As of 2012, the ESS market reached 4.6GWh and the end-user segment accounted for more than 90% of the market. As continuous growth is expected across all market segments, the market is projected to reach 8.9GWh by 2015 and 17.9GWh by 2018. The demand for LIBs for ESS applications is expected to grow to 4.6GWh by 2018, an about 17-fold increase from 270MWh of 2012.

Of the key components (cathode, anode, electrolyte, separator) of Li-ion secondary batteries, cathode materials account for about 30-40% of the Li-ion battery cost. Thus, for commercialization of large-sized li-ion batteries where costs matter, low-cost and high performance cathode materials are indispensable.

In this report, SNE Research provides global LIB shipment data including combined shipments of Tier 1 (BYD, ATL, Lishen, BAK, Coslight) & Tier 2 LIB makers (about 60 companies) in China.

In 2013, 110,769 tons of cathode materials for LIB applications were consumed across the world and China remained the world's biggest consumer, accounting for 44.5% (49,257 tons), followed by Korea, 29.7% (32,850 tons); Japan 24.5% (27,125 tons); the U.S., 0.5% (577 tons); Taiwan, 0.6% (710 tons); and others, 0.2% (250 tons).

In 2013, the majority of demand for cathode materials for LIB applications was driven by China, Korea and Japan. In these countries, the cathode material consumption was heavily weighted on LCO and Korea accounted for the largest portion in LCO consumption (59.9%). The 3 countries used NCM most after LCO. While LCO demand increased with the growth of smartphone/table PC segment, NCM showed a decrease. The 3 countries occupy 98.6% of the entire cathode material market and 64-92% of LCO and NCM are used in these countries.

Among cathode materials consumed in 2013, LCO accounted for the largest portion with 50.6% (56,090), followed by NCM with 26.9% (29,795 tons) and LMO with 11.7% (13,010 tons). NCA accounted for 5.4% (6,000 tons) and LFP 5.3%, (5,874 tons). With growing needs for high capacity LIBs in relation to the recent price erosion in cobalt and the growing smartphone/tablet PC market, the demand for LCO is on the rise. As Panasonic's cylindrical LIBs using NCA see growing demand due to the increasing sales of Tesla Model S increase, the demand for NCA is also growing.

[Cathode Material for Li-ion Secondary battery demand trand by
major LIB Cell manufacturer(2013. E)]

[Global LIB Market Forecast (2012~2018)]

SNE Research published a new report titled 'Cathode Material for Li-ion Secondary battery Technology Trend and Market Forecast (2012~2018)'.

This report covers the following topic regarding LIB cathode materials:

  • 1. Cathode material technology development trend
  • 2. Cathode material manufacturing process
  • 3. Trend in cathode material market
  • 4. Global LIB market forecast (2012~2018)
  • 5. Cathode material trend and forecast

Table of Contents

Chapter 1 - Cathode materials technology trends and market forecasts

1. Introduction

  • 1.1. Current status of Cathode Material Development
  • 1.2. Criteria for cathode material design
    • 1.2.1. Ionic bonding and Covalent bonding
    • 1.2.2. Mott-Hubbard type and Charge-transfer type
    • 1.2.3. 3d Concept for charge transfer in 3d transition metal oxides
    • 1.2.4. Concept of Diffusion in solid state and 2-phase coexistence reaction
  • 1.3. Characteristics for Cathode materials

2. Oxide cathode materials

  • 2.1. Layered compounds
    • 2.1.1. LiCoO2
    • 2.1.2. LiNiO2
    • 2.1.3. LiMO2 (M = Fe, Mn)
    • 2.1.4. Ni-Mn layered compound
    • 2.1.5. Ni-Co-Mn 3 element system
    • 2.1.6. Ni-Co-Mn ternary system
  • 2.2. Spinel compounds
    • 2.2.1. LiMn2O4
    • 2.2.2. Transition metal doped with LiMn2O4
  • 2.3. Olivine compounds
    • 2.3.1. LiFePO4
      • 2.3.1.1 Crystal structure of LiFePO4
      • 2.3.1.2. Redox potential characteristic of LiFePO4
      • 2.3.1.3. Charge/discharge curves LiFePO4
      • 2.3.1.4. Stability of LiFePO4
      • 2.3.1.5. Research trends and property improvement method
    • 2.3.2 LiMPO4 (M = Mn, Co, Ni)

3. Other cathode materials

  • 3.1. Sulfurous cathode materials
    • 3.1.1. Types and characteristics of batteries using sulfurous cathode materials
      • 3.3.1.1. Polydisulfide([(SRS)n]) Cathode Sulfur Battery : Lawrence Berkeley Lab
      • 3.3.1.2. Poly(carbon disulfide) [(CSx)n] - Polyaniline Composite Cathode Sulfur Battery : Moltech
      • 3.3.1.3v Elementary sulfur(S8, active sulfur) battery : Polyplus Corp
    • 3.1.2. Elementary Sulfur battery
      • 3.3.2.1. Property of Sulfur Cathode Material
      • 3.3.2.2. Overview of Li-S secondary battery
      • 3.3.2.3. Charge/discharge principle of Lithium/sulfur secondary batter
  • 3.2. Fluorine-containing cathode material
  • 3.3. Sodium-based cathode materials
    • 3.3.1. Introduction
    • 3.3.2. Layered oxides
      • 3.3.2.1. P2-NaxCoO2
      • 3.3.2.2. O3-NaNixCoyMnzO2 solid solution phase
      • 3.3.2.3. P2-type Mn-based layered oxides
    • 3.3.3. Phosphate-based materials
      • 3.3.3.1. Phosphate-based materials
      • 3.3.3.2. Fluorophosphate-based materials

4. Reference

Chapter 2 - Cathode Material Manufacturing Process

1. Cathode Material Manufacturing Process

  • 1.1. Mixing
  • 1.2. Calcination
  • 1.3. Crushing
  • 1.4. Classifying
  • 1.5. De-ion

2. Precursor Manufacturing Process

  • 2.1. Reactor
  • 2.2. Process after Reactor

3. Cathode material Property Evaluation

  • 3.1. Chemical Composition
  • 3.2. surface Area Meter
  • 3.3. Particle Distribution
  • 3.4. Tap Density
  • 3.5. Moisture Content
  • 3.6. Residual Lithium Carbonate
  • 3.7. Thermal Analysis
  • 3.8. Thermal Analysis Particle Intensity

Chapter 3 - Cathode Material Trend by Company

1. Korean Cathode Material Companies

  • 1.1 L&F
  • 1.2 Umicore Korea
  • 1.3 ECOPRO
  • 1.4 Cosmo AM&T

2. Japanese Cathode Material Companies

  • 2.1 Nichia
  • 2.2 Toda Kogyo
  • 2.3 AGC Seimi Chemical
  • 2.4 Nihon Kagaku Sankyo
  • 2.5 Nippon Denko
  • 2.6 JGC C&C
  • 2.7 Mitsui Kinzoku
  • 2.8 Santoku
  • 2.9 Tanaka
  • 2.10 Sumitomo Metal Mining

Chapter 4 - Global LIB Market Forecast (2012-2018)

1. Global small LIB for IT Market Forecast (2012-2018)

2. Global medium LIB for EV Market Forecast (2012-2018)

3. Global large LIB for ESS Market Forecast (2012-2018)

4. Global LIB Market Forecast-Total (2012-2018)

Chapter 5 - Cathode Material- Market Trend and Forecast

1. Cathode Market Demand

  • 1.1. Cathode Material Demand Status by Country
  • 1.2. Cathode Material Demand Status by Material
  • 1.3. Cathode Material Demand Status by Material and Country
  • 1.4. Demand Ratio by Cathode Material Material and Country
  • 1.5. Cathode Material Demand Status by Cell Manufacturer
    • 1.5.1. Samsung SDI: Cathode Material Use Status
    • 1.5.2. LG Chemical: Cathode Material Use Status
    • 1.5.3. Panasonic : Cathode Material Use Status
    • 1.5.4. Sony : Cathode Material Use Status
    • 1.5.5. AESC : Cathode Material Use Status
    • 1.5.6. Hitachi Maxell : Cathode Material Use Status
    • 1.5.7. BYD : Cathode Material Use Status
    • 1.5.8. Lishen : Cathode Material Use Status
    • 1.5.9. BAK : Cathode Material Use Status
    • 1.5.10. ATL : Cathode Material Use Status
    • 1.5.11. Coslight : Cathode Material Use Status
  • 1.6. Cathode Material Demand Status by Type
    • 1.6.1. Cathode Material Demand Status by Type and Country
    • 1.6.2. Demand Ratio by Cathode Material Type and Country

2. Cathode Material Supply Status

  • 2.1. Cathode Material Supply Status by Country
    • 2.1.1. Demand Ratio by Cathode Material Type and Country
  • 2.2. Cathode Material Market Status by Manufacturer
    • 2.2.1. LCO Market Status
    • 2.2.2. NCM Market Status
    • 2.2.3. LMO Market Status
    • 2.2.4. NCA Market Status
    • 2.2.5. FPO Market Status

3. Trend of Change in Cathode Material Demand by Type

  • 3.1. Trend of Change in Cathode Material Demand by Year and Country
  • 3.2. Trend of Change in Cathode Material Market by Year and Country
    • 3.2.1. Trend of Change in Korean Cathode Material Market
    • 3.2.2. Trend of Change in Japanese Cathode Material Market
    • 3.2.3. Trend of Change in China Cathode Material Market
  • 3.3. Trend of Change in Cathode Material Demand by Year and Cell Manufacturer
    • 3.3.1. Samsung SDI - Trend of Change in Cathode Material Demand
    • 3.2.2. LG Chemical- Trend of Change in Cathode Material Demand
    • 3.2.3. Panasonic- Trend of Change in Cathode Material Demand
    • 3.2.4. Sony- Trend of Change in Cathode Material Demand
    • 3.2.5. AESC- Trend of Change in Cathode Material Demand
    • 3.2.6. Hitachi Maxell- Trend of Change in Cathode Material Demand
    • 3.2.7. BYD- Trend of Change in Cathode Material Demand
    • 3.2.8. Lishen- Trend of Change in Cathode Material Demand
    • 3.2.9. BAK- Trend of Change in Cathode Material Demand
    • 3.2.10. ATL- Trend of Change in Cathode Material Demand
    • 3.2.11. Coslight- Trend of Change in Cathode Material Demand

4. Cathode Material Production Capacity Status

5. Cathode Material Cost Trend

  • 5.1. Cathode Material Price Structure
  • 5.2. Cathode Material Cost Trend by Type
  • 5.3. Mineral Market Trend
    • 5.3.1. Nickel
    • 5.3.2. Cobalt
    • 5.3.3. Manganese
    • 5.3.4. Lithium

Figure List

Table List

Back to Top