市場調査レポート
商品コード
1049936

リチウム二次電池用リン酸鉄リチウム(LFP)カソード材料の技術現状と市場展望(2022年)

<2022> Technology Status and Market Outlook for Lithium Secondary Battery Lithium Iron Phosphate (LFP) Cathode Material

出版日: | 発行: SNE Research | ページ情報: 英文 241 Pages | 納期: お問合せ

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=152.41円
リチウム二次電池用リン酸鉄リチウム(LFP)カソード材料の技術現状と市場展望(2022年)
出版日: 2022年01月12日
発行: SNE Research
ページ情報: 英文 241 Pages
納期: お問合せ
  • 全表示
  • 概要
  • 目次
概要

リチウム二次電池の大容量化に伴い、リチウム二次電池の価格や安全性向上が重要なテーマとして浮上しています。その中で、一昔前に開発されたLFP電池が新たなトピックとして浮上しているのは、コバルトを使用しないため比較的安価に製造でき、高温や過充電状態でも構造崩壊しないため寿命や安全性に優れ、また、2022年にはリン酸鉄リチウムの多くのコア特許が切れるため、特許料や特許侵害のリスクなしに販売できる可能性などに起因しています。

まだ多くの課題が残っているとはいえ、バルクLFPでの性能、グラフェンとの効果的な複合化、LiMnPO4での性能などが実現すれば、オリビン構造LFPのさらなる進歩が可能になると考えられています。

当レポートでは、リチウム二次電池用リン酸鉄リチウム(LFP)カソード材料について調査し、タイプと特性、開発状況や製造プロセス技術、市場展望と主要企業情報、LFP使用の自動車メーカーや電池メーカーの状況に関する考察などの情報を掲載しています。

目次

第1章 リチウム二次電池の概要

  • リチウム二次電池の歴史
  • リチウム二次電池の種類と特性
  • リチウム二次電池の原理
  • リチウム二次電池のコンポーネント
  • リチウム二次電池の用途

第2章 リチウム二次電池用カソード材料の種類と特性

  • リチウム二次電池のカソード材料の結晶構造と特性
  • 酸化物ベースのカソード材料の構造と電気化学的特性
    • 層状酸化物
    • リチウムおよびマンガン過剰酸化物
    • 不規則岩塩型酸化物
    • スピネル酸化物
  • ポリアニオンベースのカソード材料の構造と電気化学的特性
    • オリビン型ポリアニオン酸化物
    • その他のポリアニオンベースのカソード活物質

第3章 LFPカソード材料の技術開発の状況

  • LFPカソード材料の開発の方向性
  • LFPカソード材料の開発履歴
  • LFPカソード材料の基本特性
    • 結晶構造
    • 充電および放電中のリチウムの移動と相変化のメカニズム
    • 電気伝導性
    • 構造の欠陥
    • エネルギー密度
    • 温度依存性
    • 寿命特性
  • LFPカソード材料の製造プロセス
    • 合成法
    • 合成原料と熱処理
  • LFPカソード材料の技術開発動向
    • 粒子形状制御
    • 炭素ベースの錯化
    • ドーピング
    • 合金化によるエネルギー密度の増加
    • その他のオリビン型カソード材料の技術開発動向
  • LFPカソード材料の将来の研究開発の方向性の見通し

第4章 LFPカソード材料の市場と企業の状況

  • LFP使用の二次電池市場の状況
  • LFPカソード材料の主要メーカーの状況
    • Dynanonic
    • Guoxuan (Gotion)
    • BTR
    • Hunan Yuneng
    • Hubei Wanrun
    • BYD
    • Chongqing Terui
    • Pulead
    • Anda
    • Johnson Matthey
    • Tianjin STL
    • Valence
    • その他
      • Shenghua、Annada、CNNC、Yunxiang、Tinci、BASF、Dupont、Aleees、Tatung、Formosa、CAEC
  • LFPを使用している自動車メーカーの状況
  • LFPを使用している電池メーカーの状況

第5章 参考文献

目次
Product Code: 172

2021 was the year when China's interest in lithium iron phosphate (LFP, LiFePO4) batteries exploded.

The proportion of electric vehicles (EV) equipped with LFP batteries, sold in China, has surpassed that of ternary batteries, including NCM (Nickel-Cobalt-Manganese) or NCA (Nickel-Cobalt-Aluminum) since last September.

Currently, most of the LFP batteries are being produced by Chinese companies, and Volkswagen, Ford, and others, as well as Tesla, are showing interest in LFP batteries. Although even Apple, making Apple Cars, has also negotiated with China's CATL and BYD for the LFP battery supply but the negotiations failed, it is said that they are still reviewing LFP batteries.

As capacity of lithium secondary batteries has become large, the prices and safety enhancement of lithium secondary batteries are emerging as important topics. In this trend, LFP batteries, which was developed a long time ago, are emerging as a new topic, the reason is that it can be manufactured at a relatively low cost since cobalt is not utilized, that it has excellent life and safety because structural collapse does not occur even at high temperatures and in the overcharged state, and also that since most of the core patents on lithium iron phosphate will expire in 2022, it may become enabled to sell them without payment of patent fees or a risk of patent infringement. In order to understand the characteristics and merits & demerits of LFP secondary batteries, it is necessary to acquire systematic knowledge and information on lithium secondary batteries, as well as knowledge about the advantages and limitations of LFP cathode materials, and based on this, it seems possible to understand the future development direction of LFP secondary batteries.

Currently, LFP batteries can achieve a cruising distance of about 400km; in the case of the Tesla's 2021 Model 3, where the LFP cathode material is actually applied, the driving distance can achieve 407km. In addition, it is superior even in prices by using iron ? which is low in cost; due to the recent surge in the prices of raw materials for ternary products, such as cobalt, nickel, etc., such a price advantage is getting bigger. Furthermore, in terms of safety, compared to the layered ternary system, the olivine-structured LFP materials have advantages, including no fires or explosive reactions even at a high temperature of 300°C and under 260% overcharging, and others, so there is an advantage that battery makers or finished car makers don't need to reserve appropriations in preparation for safety accidents.

Even though there still remain many challenges to be solved, if performance for bulk LFP, effective complexation with graphene, and performance of LiMnPO4, etc. are realized, it is thought that further progress will be enabled in olivine-structured LFP.

In this report, we are going to examine the types and characteristics of cathode materials for lithium secondary batteries, especially investigate in detail the characteristics of lithium iron phosphate (LFP) cathode materials, which are emerging as a hot topic in recent years, and then, discuss the development status and manufacturing process technology minutely.

Here, we have organized the outlook for the LFP cathode material market and the information on major companies, and also discussed the status of LFP-applying automakers and battery makers.

The strong points of this report are as follows:

  • 1. Detailed description on types and characteristics of LFP and lithium secondary battery cathode materials
  • 2. Comparative analysis on technological characteristics of LFP materials and ternary materials
  • 3. Summary of manufacturing process and latest technology development trends for LFP
  • 4. Outlook for LFP production capacity and usage by major company
  • 5. Helpful for companies or individuals who want to enter the LFP material market or conduct new studies

Table of Contents

1. Outline of Lithium Secondary Battery

  • 1-1. History of Lithium Secondary Battery
  • 1-2. Types and Characteristics of Lithium Secondary Battery
  • 1-3. Principle of Lithium Secondary Battery
  • 1-4. Components of Lithium Secondary Battery
  • 1-5. Application of Lithium Secondary Battery

2. Types and Characteristics of Lithium Secondary Battery Cathode Materials

  • 2-1. Crystal Structure and Characteristics of Lithium Secondary Battery Cathode Materials
  • 2-2. Structure and Electrochemical Characteristics of Oxide-Based Cathode Materials
    • 2-2-1. Layered Oxide
    • 2-2-2. Li- and Mn-Rich Oxide
    • 2-2-3. Disordered Rock-Salt Oxide
    • 2-2-4. Spinel Oxide
  • 2-3. Structure and Electrochemical Characteristics of Polyanion-Based Cathode Materials
    • 2-3-1. Olivine-Type Polyanion Oxide
    • 2-3-2. Other Polyanion-Based Cathode Active Materials

3. Status of Technology Development for LFP Cathode Materials

  • 3-1. Development Direction of LFP Cathode Materials
  • 3-2. Development History of LFP Cathode Materials
  • 3-3. Basic Characteristics of LFP Cathode Materials
    • 3-3-1. Crystal Structure
    • 3-3-2. Lithium Movement and Phase Change Mechanism during Charging and Discharging
    • 3-3-3. Electrical Conductivity
    • 3-3-4. Faults in the Structure
    • 3-3-5. Energy Density
    • 3-3-6. Temperature Dependence
    • 3-3-7. Life Characteristics
  • 3-4. Manufacturing Process of LFP Cathode Materials
    • 3-4-1. Synthetic Method
    • 3-4-2. Synthetic Raw Materials and Heat Treatment
  • 3-5. Technology Development Trend of LFP Cathode Materials
    • 3-5-1. Particle Shape Control
    • 3-5-2. Complexation of Carbon-Based
    • 3-5-3. Doping
    • 3-5-4. Energy density Increase through Alloying
    • 3-5-5. Technology Development Trends of Other Olivine-Based Cathode Materials
  • 3-6. Outlook for Future R&D Directions on LFP Cathode Materials

4. Status of LFP Cathode Material Markets and Companies

  • 4-1. Status of LFP-Applied Secondary Battery Market
  • 4-2. Status of Major Manufacturers of LFP Cathode Materials
    • 4-2-1. Dynanonic
    • 4-2-2. Guoxuan (Gotion)
    • 4-2-3. BTR
    • 4-2-4. Hunan Yuneng
    • 4-2-5. Hubei Wanrun
    • 4-2-6. BYD
    • 4-2-7. Chongqing Terui
    • 4-2-8. Pulead
    • 4-2-9. Anda
    • 4-2-10. Johnson Matthey
    • 4-2-11. Tianjin STL
    • 4-2-12. Valence
    • 4-2-13. Others

(Shenghua, Annada, CNNC, Yunxiang, Tinci, BASF, Dupont, Aleees, Tatung, Formosa, CAEC)

  • 4-3. Status of Automakers Applying LFP
  • 4-4. Status of Battery Makers Applying LFP

5. References