市場調査レポート
商品コード
1494740
2030年までの水素生成市場予測:供給源、分配モード、技術、用途、地域別の世界分析Hydrogen Generation Market Forecasts to 2030 - Global Analysis By Source, Delivery Mode, Technology, Application and By Geography |
● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。 詳細はお問い合わせください。
2030年までの水素生成市場予測:供給源、分配モード、技術、用途、地域別の世界分析 |
出版日: 2024年06月06日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界の水素生成市場は2024年に1,960億7,000万米ドルを占め、2030年までに13.4%のCAGRで成長し、4,169億5,000万米ドルに達すると予測されています。
水素製造とは、クリーンエネルギー源や工業用原料として使用するために、様々な方法で水素ガスを製造するプロセスを指します。また、天然ガスやバイオマスを水蒸気改質することで、製品別として二酸化炭素とともに水素を製造する方法もあります。さらに、太陽電池や風力発電を利用した電気分解は、化石燃料を利用した技術に代わる持続可能な水素製造法として、再生可能な方法として注目を集めています。
IEAによると、2022年1月現在、世界中で少なくとも50のブルー水素プロジェクトが進行中で、2030年までに生産能力は10倍以上に拡大すると予想されています。Energy Institute Statistical Review of World Energyによると、石油精製能力は2021年から2022年にかけて0.5%の伸びを示したが、過去10年間の年間成長率は0.7%だった。
クリーン・エネルギーへの需要の高まり
クリーンエネルギー・ソリューションに対する需要の高まりが、水素生成市場を重要な位置に押し上げています。汎用性とゼロエミッション特性で知られる水素は、持続可能なエネルギーシステムへの移行における重要な要素として、ますます支持されるようになっています。世界中の産業界や政府が二酸化炭素排出量の削減に取り組む中、水素は輸送、産業、発電といった分野の脱炭素化に欠かせない存在となっています。
高い初期投資
電気分解や水蒸気メタン改質のための施設を建設し、水素の安全な貯蔵と輸送を確保するには、多額の資本投資が必要です。この経済的負担は、潜在的な投資家や利害関係者が市場に参入したり、既存の事業を拡大したりすることを躊躇させることが多いです。投資収益や規制の枠組みを取り巻く不確実性は、資金調達をさらに複雑にしています。その結果、多くの地域が水素生産能力の拡大の遅れや限界に直面し、市場がよりクリーンなエネルギー・ソリューションへの移行における重要なプレーヤーとなる可能性を妨げています。
電解技術の進歩
電解技術の進歩は、より効率的でコスト効率が高く、持続可能な水素製造方法を提供することで、水素製造市場に革命をもたらしています。従来の電解では、電気を使って水分子を水素と酸素に分解します。プロトン交換膜(PEM)電解や固体酸化物電解セル(SOEC)といった最近の技術革新は、水素製造の効率と拡張性を大幅に改善しました。例えばPEM電解は、より高い圧力と温度で作動するため、反応速度が速くなり、エネルギー消費量が少なくなります。
バリューチェーンにおけるエネルギー損失
バリューチェーンにおけるエネルギーロスは、水素生成市場の成長にとって大きな課題となっています。水素製造には、抽出や電気分解から圧縮、輸送に至るまでいくつかの段階があり、それぞれにエネルギーロスが生じやすいです。例えば、水蒸気メタン改質のような従来の方法では、原料の転換や輸送の際にエネルギーロスが発生します。同様に、電気分解はグリーン水素製造に有望ではあるが、発電と変換時に効率ロスが生じる。こうしたロスは水素製造の全体効率を低下させるだけでなく、コストを上昇させ、化石燃料に対する水素の競争力を低下させる。
当初、市場は、ウイルスの蔓延を抑えるために行われた封鎖や制限により、サプライチェーンや製造工程に混乱をきたしました。そのため、パンデミックは、小規模な事業者や顧客の間で需要が減少し、資金繰りが苦しくなったことから、水素生成の世界市場に影響を与えました。しかし、パンデミックはクリーンエネルギー源の重要性を浮き彫りにし、持続可能な代替エネルギーとしての水素への関心と投資の増加につながった。
予測期間中、バイオマス分野が最大となる見込み
バイオマス分野は、持続可能で再生可能な水素製造源を提供することで、予測期間中に最大となる見込みです。農業残渣、林業廃棄物、有機都市固形廃棄物などの有機物から得られるバイオマスは、ガス化、熱分解、発酵などの様々な熱化学的・生化学的プロセスを通じて水素に変換することができます。このアプローチは、化石燃料に代わる信頼性の高い代替燃料を提供するだけでなく、温室効果ガスの排出削減にも役立つため、環境問題にも対処できます。
部分酸化セグメントは予測期間中最も高いCAGRが見込まれる
部分酸化分野は、予測期間中に最も高いCAGRが見込まれます。部分酸化は、通常触媒の存在下で炭化水素を酸素と反応させ、水素ガスを発生させる。このプロセスには、高い変換効率、原料選択の多様性、水蒸気メタン改質のような従来の方法に比べて比較的低い運転コストなど、いくつかの利点があります。さらに、POXは天然ガス、石炭、バイオマスなど多様な原料を利用できるため、地理的・経済的背景の違いにも適応できます。
風力発電や太陽光発電のような再生可能エネルギーを利用することで、グリーン水素製造は炭素排出を大幅に削減します。この進歩は、環境への懸念に対処するだけでなく、エネルギー・ミックスを多様化することで、エネルギーの独立性と安全保障を促進します。さらに、グリーン水素の拡張性と汎用性により、同地域全域で輸送や発電を含む様々なセクターの脱炭素化に向けた有望なソリューションとなっています。
欧州地域は、予測期間中に有益な成長を遂げると思われます。より厳しい排出目標とカーボンニュートラルの追求が、各国政府による水素技術の地域的導入へのインセンティブを後押ししています。欧州グリーンディールや各国の水素戦略などの政策は、研究開発やインフラ整備に資金を割り当て、技術革新と市場成長を促進しています。さらに、規制の枠組みは投資家に確実性を提供し、地域全体で水素の生産と流通を拡大するための民間セクターの関与を促しています。
According to Stratistics MRC, the Global Hydrogen Generation Market is accounted for $196.07 billion in 2024 and is expected to reach $416.95 billion by 2030 growing at a CAGR of 13.4% during the forecast period. It refers to the process of producing hydrogen gas through various methods, typically for use as a clean energy source or industrial feedstock. Another approach involves steam reforming of natural gas or biomass, which produces hydrogen along with carbon dioxide as a byproduct. Additionally, solar or wind-powered electrolysis is gaining traction as a renewable method of hydrogen production, offering a sustainable alternative to fossil fuel-based techniques.
According to IEA, in January 2022, there were at least 50 blue hydrogen projects in the works around the world, with capacity expected to grow more than tenfold by 2030. According to the Energy Institute Statistical Review of World Energy, the oil refining capacity witnessed a growth rate of 0.5% between 2021 and 2022, whereas the annual growth rate in the last decade was 0.7%.
Increasing demand for clean energy
The growing demand for clean energy solutions has propelled the hydrogen generation market into a prominent position. Hydrogen, renowned for its versatility and zero-emission properties, is increasingly favored as a key component in the transition towards sustainable energy systems. As industries and governments worldwide commit to reducing carbon footprints, hydrogen emerges as a vital player in decarbonizing sectors such as transportation, industry, and power generation.
High initial investment
Building facilities for electrolysis or steam methane reforming, as well as ensuring safe storage and transportation of hydrogen, demands substantial capital outlay. This financial burden often dissuades potential investors and stakeholders from entering the market or expanding existing operations. The uncertainty surrounding returns on investment and regulatory frameworks further complicates financing arrangements. Consequently, many regions face delays or limitations in scaling up hydrogen production capacity, hindering the market's potential to become a prominent player in the transition towards cleaner energy solutions.
Advancements in electrolysis technologies
Advancements in electrolysis technologies are revolutionizing the hydrogen generation market by offering more efficient, cost-effective, and sustainable methods for producing hydrogen. Traditional electrolysis involves splitting water molecules into hydrogen and oxygen using electricity. Recent innovations such as proton exchange membrane (PEM) electrolysis and solid oxide electrolysis cells (SOEC) have significantly improved the efficiency and scalability of hydrogen production. PEM electrolysis, for instance, operates at higher pressures and temperatures, resulting in faster reaction rates and lower energy consumption.
Energy loss in value chain
Energy loss in the value chain poses a significant challenge to the growth of the hydrogen generation market. Hydrogen production involves several stages, from extraction or electrolysis to compression and transportation, each prone to energy losses. For instance, conventional methods like steam methane reforming suffer from energy loss during conversion and transportation of feedstocks. Similarly, electrolysis, though promising for green hydrogen production, faces efficiency losses during electricity generation and conversion. These losses not only decrease the overall efficiency of hydrogen production but also increase costs, making hydrogen less competitive against fossil fuels.
Initially, the market experienced disruptions in supply chains and manufacturing processes due to lockdowns and restrictions imposed to curb the spread of the virus. The pandemic has therefore had an impact on the global market for hydrogen generation due to decreased demand and cash-deficit difficulties among small operators and clients. However, the pandemic also highlighted the importance of clean energy sources, leading to increased interest and investments in hydrogen as a sustainable alternative.
The Biomass segment is expected to be the largest during the forecast period
Biomass segment is expected to be the largest during the forecast period by offering a sustainable and renewable source for hydrogen production. Biomass, derived from organic materials such as agricultural residues, forestry waste, and organic municipal solid waste, can be converted into hydrogen through various thermochemical and biochemical processes like gasification, pyrolysis, and fermentation. This approach not only provides a reliable alternative to fossil fuels but also helps in reducing greenhouse gas emissions, thus addressing environmental concerns.
The Partial Oxidation segment is expected to have the highest CAGR during the forecast period
Partial Oxidation segment is expected to have the highest CAGR during the forecast period. Partial Oxidation involves reacting hydrocarbons with oxygen, typically in the presence of a catalyst, to generate hydrogen gas. This process offers several advantages, including high conversion efficiency, versatility in feedstock selection, and relatively low operational costs compared to traditional methods like steam methane reforming. Moreover, POX can utilize a variety of feedstocks such as natural gas, coal, or biomass, making it adaptable to different geographical and economic contexts.
By harnessing renewable energy sources such as wind and solar power, green hydrogen production significantly reduces carbon emissions, aligning with the region's ambitious climate goals, North America region commanded the largest market share during the projection period. This advancement not only addresses environmental concerns but also fosters energy independence and security by diversifying the energy mix. Moreover, the scalability and versatility of green hydrogen make it a promising solution for decarbonizing various sectors, including transportation and power generation across the region.
Europe region is poised to witness profitable growth over the extrapolated period. Stricter emissions targets and the pursuit of carbon neutrality are driving governments to incentivize the regional adoption of hydrogen technologies. Policies such as the European Green Deal and national hydrogen strategies allocate funding for research, development and infrastructure, fostering innovation and market growth. Additionally, regulatory frameworks provide certainty for investors, encouraging private sector involvement in scaling up hydrogen production and distribution across the region.
Key players in the market
Some of the key players in Hydrogen Generation market include Air Liquide S.A., Ballard Power Systems, Cummins Inc, Fuelcell Energy, Hiringa Energy Limited, ITM Power, Plug Power, Praxair Inc and Siemens.
In October 2023, H2B2, a technology company with a portfolio in Hydrogen production systems, unveiled the green hydrogen plant, which is expected to become operational in North America, the SoHyCal facility located in Fresno, California, United States. The project envisages 100 percent clean hydrogen production using PEM technology.
In October 2023, Hygenco Green Energies announced its plans to operate and construct a cent percent green H2 gas plant in Maharashtra, India. The company also plans to supply green hydrogen and green oxygen to Sterlite Technologies Ltd. This is expected to become one of the first hydrogen Generation Plants in Maharashtra.
In May 2023, the Tokyo Tech InfoSyEnergy Research and Education Consortium, in collaboration with the Tokyo Tech Academy of Energy and Informatics, introduced a fuel cell capable of producing electricity using a combination of hydrogen and hydrogen derived from waste plastic materials.
In February 2023, the leading Indian oil company, Indian Oil Corporation (IOC), embarked on a green transformation strategy worth INR 2 trillion, with the aim of achieving net-zero emissions from its operational activities by 2046. As part of this initiative, Indian Oil Corporation plans to establish green hydrogen facilities at all of its refineries.