お知らせ :東京証券取引所JASDAQスタンダード市場への新規上場に関するお知らせ
株式会社グローバルインフォメーション
デフォルト表紙
市場調査レポート
商品コード
812754

eMBMS:商用LTEネットワークにおけるeMBMS/LTE-Broadcastのビデオ品質

Let's Go to the Videotape - But Only if the Mood is Right: Quantifying the Video Quality of eMBMS/LTE-Broadcast in a Commercial LTE Network

出版日: | 発行: Signals Research Group | ページ情報: 英文 40 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=110.22円
eMBMS:商用LTEネットワークにおけるeMBMS/LTE-Broadcastのビデオ品質
出版日: 2019年03月15日
発行: Signals Research Group
ページ情報: 英文 40 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、eMBMS (evolved Multimedia Broadcast Multicast Service) について取り上げ、最新の調査結果について、体系的な情報を提供しています。

第1章 エグゼクティブサマリー

第2章 主な見解

第3章 eMBMSの技術入門

第4章 eMBMSとユニキャストのベンチマーク調査結果

第5章 テスト手法

第6章 結論

第7章 付録

目次

SRG conducted its second independent benchmark study of LTE-Broadcast and how it compares with unicast delivery mechanisms. For this study, we focused primarily on the video MOS (Mean Opinion Score), which provides an objective quantification of the video quality.

Highlights of the Report include the following:

Our Thanks. We did this study in collaboration with Spirent Communications who provided us with its Umetrix platform to quantify the video quality (VMOS) with a non-reference video.

Our Methodology. We leveraged Telstra's commercial LTE network in Australia. We used up to 21 Galaxy S8 and S8 Plus smartphones to generate loading in Band 28. By varying the number of devices using unicast we could compare and contrast the video quality with LTE-Broadcast, which also resided in Band 28.

Background. This report marks our second benchmark study of LTE-Broadcast. In our first study, we focused primarily on the impact of unicast and LTE-Broadcast on the network as well as various video delivery metrics. In that study, published two years ago, we provided strong proof that the crossover point in efficiency between LTE-B and unicast occurs with a vew low number of subscribers (in the very low single digits).

The Results. The results of this eMBMS benchmark study prove there are substantial improvements in the video quality with LTE-B versus unicast. Further, we only needed to use a handful of smartphones to document the improvements. Without question, in venues where there is a large number of people watching the same video content, the benefits of LTE-B on the user experience will be even more pronounced.

Table of Contents

  • 1.0 Executive Summary
  • 2.0 Key Observations
  • 3.0 An eMBMS Technical Primer
  • 4.0 eMBMS and Unicast Benchmark Study Results
  • 5.0 Test Methodology
  • 6.0 Final Thoughts
  • 7.0 Appendix

Index of Figures & Tables

  • Figure 1. MBSFN Service Area
  • Figure 2. eMBMS Network Architecture
  • Figure 3. eMBMS Test Location
  • Figure 4. Video MOS with Six Smartphones Using Unicast
  • Figure 5. Image Complexity with Six Smartphones Using Unicast
  • Figure 6. Motion Complexity with Six Smartphones Using Unicast
  • Figure 7. Video MOS with Twenty Smartphones Using Unicast
  • Figure 8. Video MOS Summary with Twenty Smartphones Using Unicast
  • Figure 9. Image Complexity with 20 Smartphones Using Unicast
  • Figure 10. Motion Complexity with 20 Smartphones Using Unicast
  • Figure 11. Video MOS with Twenty Smartphones Using Unicast and Transition to LTE-B
  • Figure 12. Video MOS Summary with Twenty Smartphones Using Unicast and the Transition to LTE-B
  • Figure 13. Video MOS Summary with Twenty Smartphones Using Unicast or LTE-B
  • Figure 14. Broadcast Still Image - Close-up
  • Figure 15. Unicast Still Image - Close-up
  • Figure 16. Broadcast Still Image - Zoomed-out
  • Figure 17. Unicast Still Image - Zoomed-out
  • Figure 18. Video MOS with Eighteen Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 19. Video MOS Summary with Eighteen Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 20. Video MOS with Decreasing Numbers of Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 21. Video MOS Detailed Results with Decreasing Numbers of Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 22. Video MOS Summary with Decreasing Numbers of Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 23. Video MOS with Increasing Numbers of Smartphones Using Unicast and the Transition to LTE-B
  • Figure 24. Video MOS Detailed Results with Increasing Numbers of Smartphones Using Unicast and the Transition to LTE-B
  • Figure 25. Video MOS Summary with Increasing Numbers of Smartphones Using Unicast and the Transition to LTE-B
  • Figure 26. PDSCH Throughput and MCS Values During the Transition from Unicast (Carrier Aggregation) to LTE-B
  • Figure 27. RB Allocation During the Transition from Unicast (Carrier Aggregation) to LTE-B
  • Figure 28. Umetrix Hardware Platform
  • Figure 29. Umetrix GUI
  • Figure 30. Video Testing at Telstra Building in Sydney
  • Figure 31. Video Testing in Parramatta
  • Figure 32. Image Complexity with 18 Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 33. Motion Complexity with 18 Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 34. Video MOS with Fifteen Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 35. Video MOS Summary with Fifteen Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 36. Video MOS with Ten Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 37. Video MOS Summary with Ten Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 38. Video MOS with Decreasing Numbers of Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 39. Video MOS Detailed Results with Decreasing Numbers of Smartphones Using Unicast and Three Smartphones Using LTE-B
  • Figure 40. Video MOS Summary with Decreasing Numbers of Smartphones Using Unicast and Three Smartphones Using LTE-B
株式会社グローバルインフォメーション
© Copyright 1996-2021, Global Information, Inc. All rights reserved.