お知らせ :東京証券取引所JASDAQスタンダード市場への新規上場に関するお知らせ
株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
980085

OEMサイバーセキュリティレイアウトの調査:2020年

OEM Cyber Security Layout Report, 2020

出版日: | 発行: ResearchInChina | ページ情報: 英文 130 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=110.58円
OEMサイバーセキュリティレイアウトの調査:2020年
出版日: 2020年12月25日
発行: ResearchInChina
ページ情報: 英文 130 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

サーバーとデジタルキーは攻撃に対して脆弱なポートであり、OEMはサイバーセキュリティへの取り組みを強化しています。現在、自動車のサイバーセキュリティイベントは、主にサーバー、デジタルキー、モバイルAPP、OBDポートへの攻撃から発生しています。

統計的には、中国における新車へのテレマティクス機能の導入率は2020年1月から10月にかけて50%を超え、2025年には75%程度に上昇すると予測されています。

OEMは、サイバーセキュリティにおいてこれまで以上に幅広い協力関係を築いています。OEMは、セキュリティの強化に加えて、車両、通信、プラットフォーム、データ、およびアプリケーションに関する外部のコラボレーションを積極的に求めています。

当レポートでは、世界のOEMによるサイバーセキュリティレイアウトについて調査し、IoVサイバーセキュリティの概要、IoVサイバーセキュリティ技術のアプリケーション、中国および世界における自動車サイバーセキュリティ標準開発の動向、自動車サイバーセキュリティ業界の現状、OEM各社のサイバーセキュリティレイアウトなどについて分析しています。

目次

第1章 IoVサイバーセキュリティの概要

  • 概要
    • 定義
    • IoVサイバーセキュリティ保護
  • IoVサイバーセキュリティ技術のアプリケーション
    • T-BOX
    • IVI
    • デジタルキーシステム
    • カークラウドネットワーク通信セキュリティ向けPKI
    • 車載システム向けFOTA
  • 国内外での自動車サイバーセキュリティ標準の開発
    • 中国と世界における自動車サイバーセキュリティ標準開発の概要
    • IoVサイバーセキュリティに関する主要な国際政策と規制
    • IoVサイバーセキュリティに関する欧州の主要な政策と規制
    • IoVサイバーセキュリティに関するアメリカと日本の主要な政策と規制
    • 中国のIoVサイバーセキュリティ標準システムアーキテクチャ
    • 中国のIoVサイバーセキュリティ標準構築
  • 中国の自動車サイバーセキュリティの現状と動向
    • サイバーセキュリティに対するCASEの影響
    • IoVサイバーセキュリティの現状に関する業界関係者の知識
    • 車両のE / Eアーキテクチャがサイバーセキュリティに与える影響
    • 自動車サイバーセキュリティ技術開発戦略:クラウド
    • 自動車サイバーセキュリティ技術開発戦略:通信
    • 自動車サイバーセキュリティ技術開発戦略:車両

第2章 自動車サイバーセキュリティ業界の現状

  • OEMサイバーセキュリティイベントの分析
    • OEMサイバーセキュリティイベントの分析
    • OEMサイバーセキュリティイベントの分析:イベントの概要
    • OEMサイバーセキュリティイベント(アプリケーション)の分析(I)
    • OEMサイバーセキュリティイベント(アプリケーション)の分析(II)
    • OEMサイバーセキュリティイベント(プラットフォーム)の分析(III)
    • OEMサイバーセキュリティイベント(プラットフォーム)の分析(IV)
    • OEMサイバーセキュリティイベント(車両)の分析(V)
    • OEMサイバーセキュリティイベント(車両)の分析(VI)
    • OEMサイバーセキュリティイベント(通信)の分析(VII)
    • OEMサイバーセキュリティイベント(通信)の分析(VIII)
  • OEMサイバーセキュリティレイアウトの比較
    • 欧州・アメリカのOEM
    • 日本・韓国のOEM
    • 中国のOEM
  • OEMのサイバーセキュリティコラボレーション
    • 欧州・アメリカのOEM
    • 日本・韓国のOEM
    • 中国のOEM
    • 中国の自動車サイバーセキュリティ業界マップ

第3章 欧州・アメリカのOEMサイバーセキュリティレイアウト

  • Mercedes-Benz
    • サイバーセキュリティレイアウト
    • サイバーセキュリティ技術ルート
    • サイバーセキュリティパートナー
  • BMW
  • Audi
  • VW
  • Volvo
  • Ford
  • GM

第4章 日本・韓国のOEMサイバーセキュリティレイアウト

  • Toyota
    • サイバーセキュリティレイアウト
    • サイバーセキュリティ技術ルート
    • サイバーセキュリティパートナー
  • Honda
  • Nissan
  • Hyundai

第5章 中国OEMのサイバーセキュリティレイアウト

  • Xpeng Motors
    • サイバーセキュリティレイアウト
    • サイバーセキュリティ技術ルート
    • サイバーセキュリティパートナー
  • NIO
  • Lixiang
  • WM Motor
  • Dongfeng Motor
  • SAIC
  • BAIC
  • GAC
目次

Research into automotive cyber security: server and digital key are the ports vulnerable to attacks, for which OEMs have stepped up efforts in cyber security.

With advances in the CASE (Connected, Autonomous, Shared, and Electrified) trend, cars are going smarter ever with functional enrichment. Statistically, the installation rate of telematics feature to new cars in China is over 50% from January to October of 2020, a figure projected to rise to 75% or so in 2025. In terms of functionality, intelligent cockpit and advanced automated driving become trending, and the features such as multi-modal interaction, multi-display interaction, 5G connectivity, V2X, OTA and digital key finds ever broader application alongside the soaring number of vehicle control codes and more port vulnerabilities to safety threat.

Currently, the automotive cyber security events arise mainly from attacks on server, digital key, mobile APP, OBD port among others.

Server acts as the most important port for cyber security, which is exposed to the attack by hackers on operating system, database, TSP server, OTA server and the like, thus issuing in data tampering, damage and vehicle safety accidents. Most tools of assault on servers are remotely accessible with lower costs, while the data storage over servers is of paramount importance, all of which lead to often a rather high share of attacks on servers.

Digital key, as the second port that matters most to cyber security, is a common media subject to vehicle intrusion and theft. In 2020, there will be 300,000 Bluetooth digital key installs in China, coupled with an installation rate at about 4%, with such more functionalities besides lock/unlock & start as account log-in, key sharing, vehicle trajectory record, and parcel delivery to cars, which has ever more implications on vehicle safety.

Different auto brands are subject to varied attack on vehicle security.

The smarter a car is, the more vulnerable to security attacks will be. Amid the intelligence trend, all OEMs, whatever Mercedes-Benz, BMW, Audi, VW, Toyota, Honda or Hyundai, have varied exposure to security attacks.

In March 2020, key encryption approaches of OEMs like Toyota, Hyundai and KIA were reported to have limitations with a possibility of intrusions and thefts largely due to the vulnerabilities of TI's DST80 encryption system employed by them. A hacker just stands near the car that packs DST80 remote control key, using the inexpensive Proxmark RFID reader/transmitter for the 'identity theft' of the key and thus getting the encrypted information.

OEM quicken their presence in cyber security

To address serious challenges in automotive cyber security, the OEMs are sparing no efforts in security improvement in many aspects:

  • 1) information management inside the company and optimization of R&D process;
  • 2) to build a team intended for cyber security;
  • 3) cyber security protection of telematics.

European and American OEMs: Diversified deployments of cyber security protection

The automakers from Europe and America are pushing ahead with cyber security construction roundly with technical superiorities, with a tightened control on information security management inside the company apart from improvements in cyber security protection of telematics. As concerns team construction, the majority of European and American OEMs as usual set up either an independent cyber security division or a subsidiary to ensure information security during a vehicle lifespan.

Mercedes-Benz, for instance, has such actions for cyber security in the three below:

  • Cloud computing: vehicle data protection enabled by a cloud platform through which the car owner takes control of data openness to the outside while driving, and at the same time relevant information will be eliminated automatically after the car owner leaves his/her car;
  • Factory: partnership with telecom carriers and equipment vendors to set up intelligent vehicle manufacturing factories with production data safety enabled by 5G mobile network;
  • Vulnerability protection: joins forces with third-party cybersecurity providers to test and repair the potential vulnerabilities of intelligent connected vehicle.
  • Japanese and Korean OEMs: with a more focus on cyber security protection and management inside the company
  • Nissan Motor, for example, proceeds with intro-company management on information security and perfects the regulations concerned. Over the recent years, Nissan has been improving its R&D management system and cyber security platform, with its Tel Aviv-based joint innovation laboratory and collaborations with Israeli start-ups on cyber security testing and study. As yet, Nissan has more than ten cooperative joint prototype projects.
  • Chinese OEMs: the emerging forces go ahead of the rest.
    • The emerging carmakers are commendable in cyber security protection. Cases include XPENG Motors that boast concurrent deployments over cloud, vehicle and mobile phone by building a security team on its own and the partnerships with Aliyun, Irdeto, and Keen Security Lab of Tencent in order for a proactive protection system; and NIO that has built a X-Dragon multi-dimensional protection system through a self-owned security team and multi-party cooperation.

Also, the time-honored Chinese automakers follow suit, such as Dongfeng Motor, SAIC, GAC and BAIC that all prioritize the security stewardship during their life cycle. As concerns its overall deployment, SAIC, for example, incorporates its subordinates into the group's cyber security protection and management system and applies the data encryption software (GS-EDS system) with one accord for data safety as a whole; secondly, SAIC builds a cloud platform independently and a proprietary cloud computing center delivering cloud-based security services; last, SAIC founded SAIC Lingshu Software Co., Ltd in charge of developing basic technology platform and sharpening software R&D competence.

OEMs have ever broader cooperation in cyber security.

In addition to security enhancement, OEMs are vigorously seeking for external collaborations on vehicle, communication, platform, data, and application, to name a few.

Table of Contents

1. Overview of IoV Cyber Security

  • 1.1 Overview
    • 1.1.1 Definition
    • 1.1.2 IoV Cyber Security Protection
  • 1.2 IoV Cyber Security Technology Application
    • 1.2.1 T-BOX Safety Technology Application
    • 1.2.2 IVI Safety Technology Application
    • 1.2.3 Safety Technology Application of Digital Key System
    • 1.2.4 PKI Technology Application for Car Cloud Network Communication Security
    • 1.2.5 FOTA Safety Technology Application for Onboard System
  • 1.3 Automotive Cyber Security Standard Development at Home and Abroad
    • 1.3.1 Overview of Automotive Cyber Security Standard Development in China and the World
    • 1.3.2 Major International Policies and Regulations on IoV Cyber Security
    • 1.3.3 Major European Policies and Regulations on IoV Cyber Security
    • 1.3.4 Major American and Japanese Policies and Regulations on IoV Cyber Security
    • 1.3.5 Chinese IoV Cyber Security Standard System Architecture
    • 1.3.6 Chinese IoV Cyber Security Standard Construction
  • 1.4 Status Quo and Trend of Chinese Automotive Cyber Security
    • 1.4.1 Impact of CASE on Cyber Security
    • 1.4.2 Knowledge of Industry Insiders on Status Quo of IoV Cyber Security
    • 1.4.3 Impact of Vehicle E/E Architecture on Cyber Security
    • 1.4.4 Automotive Cyber Security Technology Development Strategy: Cloud
    • 1.4.5 Automotive Cyber Security Technology Development Strategy: Communication
    • 1.4.6 Automotive Cyber Security Technology Development Strategy: Vehicle

2. Status Quo of Automotive Cyber Security Industry

  • 2.1 Analysis of OEM Cyber Security Events
    • 2.1.1 Analysis of OEM Cyber Security Events
    • 2.1.2 Analysis of OEM Cyber Security Events: Event Summary
    • 2.1.3 Analysis (I) of OEM Cyber Security Event (Application)
    • 2.1.4 Analysis (II) of OEM Cyber Security Event (Application)
    • 2.1.5 Analysis (III) of OEM Cyber Security Event (Platform)
    • 2.1.6 Analysis (IV) of OEM Cyber Security Event (Platform)
    • 2.1.7 Analysis (V) of OEM Cyber Security Event (Vehicle)
    • 2.1.8 Analysis (VI) of OEM Cyber Security Event (Vehicle)
    • 2.1.9 Analysis (VII) of OEM Cyber Security Event (Communication)
    • 2.1.10 Analysis (VIII) of OEM Cyber Security Event (Communication)
  • 2.2 Comparison of OEM Cyber Security Layouts
    • 2.2.1 European and American OEMs
    • 2.2.2 Japanese and Korea OEMs
    • 2.2.3 Chinese OEMs
  • 2.3 Cyber Security Collaborations of OEMs
    • 2.3.1 European and American OEMs
    • 2.3.2 Japanese and Korea OEMs
    • 2.3.3 Chinese OEMs
    • 2.3.4 Chinese Automotive Cyber Security Industry Map

3. Cyber Security Layouts of European and American OEMs

  • 3.1 Mercedes-Benz
    • 3.1.1 Cyber Security Layout
    • 3.1.2 Cyber Security Technology Route
    • 3.1.3 Cyber Security Partners
  • 3.2 BMW
    • 3.2.1 Cyber Security Layout
    • 3.2.2 Cyber Security R&D System Construction
    • 3.2.3 Cyber Security Partners
  • 3.3 Audi
    • 3.3.1 Cyber Security Layout
    • 3.3.2 Cyber Security R&D System Construction
    • 3.3.3 Cyber Security Partners
  • 3.4 VW
    • 3.4.1 Cyber Security Layout
    • 3.4.2 Cyber Security R&D System Construction
    • 3.4.3 Cyber Security Partners
  • 3.5 Volvo
    • 3.5.1 Cyber Security Layout
    • 3.5.2 Cyber Security R&D System Construction
    • 3.5.3 Cyber Security Partners
  • 3.6 Ford
    • 3.6.1 Cyber Security Layout
    • 3.6.2 Cyber Security R&D System Construction
    • 3.6.3 Cyber Security Partners
  • 3.7GM
    • 3.7.1 Cyber Security Layout
    • 3.7.2 Cyber Security R&D System Construction
    • 3.7.3 Cyber Security Partners

4. Cyber Security Layout of Japanese and Korean OEMs

  • 4.1 Toyota
    • 4.1.1 Cyber Security Layout
    • 4.1.2 Cyber Security Technology Route
    • 4.1.3 Cyber Security Partners
  • 4.2 Honda
    • 4.2.1 Cyber Security Layout
    • 4.2.2 Cyber Security R&D System Construction
    • 4.2.3 Cyber Security Partners
  • Software
  • 4.3 Nissan
    • 4.3.1 Cyber Security Layout
    • 4.3.2 Cyber Security R&D System Construction
    • 4.3.3 Cyber Security Partners
  • 4.4 Hyundai
    • 4.4.1 Cyber Security Layout
    • 4.4.2 Cyber Security Technical Route
    • 4.4.3 Cyber Security Partners

5. Cyber Security Layout of Chinese OEMs

  • 5.1 Xpeng Motors
    • 5.1.1 Cyber Security Layout
    • 5.1.2 Cyber Security Technology Route
    • 5.1.3 Cyber Security Partners
  • 5.2 NIO
    • 5.2.1 Cyber Security Layout
    • 5.2.2 Cyber Security Technology Route
    • 5.2.3 Cyber Security Partners
  • 5.3 Lixiang
    • 5.3.1 Cyber Security Layout
    • 5.3.2 Cyber Security Technology Route
    • 5.3.3 Cyber Security Partners
  • 5.4 WM Motor
    • 5.4.1 Cyber Security Layout
    • 5.4.2 Cyber Security Technology Route
    • 5.4.3 Cyber Security Partners
  • 5.5 Dongfeng Motor
    • 5.5.1 Cyber Security Layout
    • 5.5.2 Cyber Security Technology Route
    • 5.5.3 Cyber Security Partners
  • 5.6 SAIC
    • 5.6.1 Cyber Security Layout
    • 5.6.2 Cyber Security Technology Route
    • 5.6.3 Cyber Security Partners
  • 5.7 BAIC
    • 5.7.1 Cyber Security Layout
    • 5.7.2 Cyber Security Technology Route
    • 5.7.3 Cyber Security Partners
  • 5.8 GAC
    • 5.8.1 Cyber Security Layout
    • 5.8.2 Cyber Security Technology Route
    • 5.8.3 Cyber Security Partners
株式会社グローバルインフォメーション
© Copyright 1996-2021, Global Information, Inc. All rights reserved.