無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
市場調査レポート

CVIS (協調車両インフラシステム) ・V2X (Vehicle to Everything) 産業:2018年

Cooperative Vehicle Infrastructure System (CVIS) and Vehicle to Everything (V2X) Industry Report, 2018

発行 ResearchInChina 商品コード 747486
出版日 ページ情報 英文 165 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.61円で換算しております。
Back to Top
CVIS (協調車両インフラシステム) ・V2X (Vehicle to Everything) 産業:2018年 Cooperative Vehicle Infrastructure System (CVIS) and Vehicle to Everything (V2X) Industry Report, 2018
出版日: 2018年11月12日 ページ情報: 英文 165 Pages
概要

全自動運転における最も重要な技術として、C-V2X (セルラーV2X) とCVIS (協調車両インフラシステム) が挙げられます。

当レポートでは、CVIS (協調車両インフラシステム) ・V2X (Vehicle to Everything) 産業について調査分析し、産業の概要、進捗状況、主要企業プロファイルなど、体系的な情報を提供しています。

第1章 CVIS・V2X

  • CVISとは
  • 全自動運転に必要なCVIS
  • CVISは将来のITSで重要な役割を果たす
  • CVISのコア技術
  • 米国におけるCVISの進捗
  • 欧州におけるCVISの進捗
  • 日本におけるCVISの進捗
  • CVISの応用シナリオ
  • 中国における最初の都市CVISプラットフォームの完全実施

第2章 V2X・DSRC

  • 自動車用通信の主要技術
  • V2Xの定義
  • V2Xが必要な理由
  • V2Xの応用ケース
  • V2Xサービス
  • V2Xの2つの規格
  • V2Xの通信システム構造
  • 世界の政府によるV2Xへのサポート
  • 中国によるV2Xアプリケーション層の最初の標準化協会
  • V2Xの開発段階
  • 世界のセルラーモデムの出荷台数推計
  • V2Xの周波数帯
  • DSRCの定義
  • C-V2XとDSRCの比較
  • DSRCによる基地局の需要

第3章 C-V2X

  • C-V2Xの定義
  • 全自動運転におけるC-V2X応用のタイムライン
  • C-V2X規格の進歩
  • C-V2X産業の現状
  • C-V2Xチップの進捗
  • 中国におけるC-V2Xの進歩
  • 中国におけるC-V2X規格の進歩
  • 5GAA

第4章 インテリジェントロード

  • インテリジェントロード
  • インテリジェントロードにおけるパイロットの6つの方向性
  • インテリジェントロードの3つの開発段階
  • インテリジェントロードの役割
  • インテリジェントロードの建設
  • インテリジェントロードの技術アーキテクチャー
  • インテリジェントロードの指標モニタリング
  • インテリジェントロードの装置と設備

第5章 海外のCVIS・V2X企業

  • Qualcomm
  • NXP
  • Continental
  • Aptiv
  • デンソー
  • Sierra Wireless
  • Telit
  • Cohda Wireless
  • Savari
  • Kapsch
  • Arada Systems
  • Autotalks
  • U-blox
  • DANLAW
  • Nokia
  • Commsignia

第6章 中国のCVIS・V2X企業

  • Huawei
  • China Datang Corporation
  • Alibaba
  • Baidu
  • Nebula Link
  • Unex Technology
  • CiDi.ai
  • Shenzhen Genvict Technologies
  • Huali Technology
  • China TransInfo Technology
  • China Information Communication Technology (CICT)
  • WanJi Technology
目次

Autonomous driving fuses emerging technologies in many industries, and springs up with combinations of new technologies, solutions and products. Cellular vehicle-to-everything (C-V2X) and cooperative vehicle infrastructure system (CVIS) as the two most valued technologies expectedly boomed last year.

Preparing the report brings us back to the development course of personal digital assistant (PDA) and cellphone industry as we are a research institution experiencing how cellphones become intelligent.

There was a melee between PDA and PDA cellphone before iPhone. Palm was the first one sought after by numerous PDA-fanciers who voluntarily wrote evaluation reports and organized fan exchange clubs for the firm, an echo to today's Tesla.

Many independent operating system developers and open API-based PDA and cellphone vendors (like Nokia) which were active players in the market, then disappeared. These days some OEMs are either developing operating systems by themselves or open software/hardware interfaces. Emerging car manufacturing forces mushroom as herds of cellphone knockoffs did in those years. History does often rhyme.

Without doubt, car manufacturing differs a lot from cellphone industry for its industry scale and complexity more than ten times larger, so it is not quite right to draw a full analogy between them.

Apple's APPSTORE model, the built 2.5G/3G/4G wireless data networks and the unified smartphone operating systems (with developers reduced to 2 or 3 from dozens) served as a premise of the subsequent prosperity, application and service expansion of mobile internet. Intelligent vehicle industry is probable to follow suit.

IT firms that foray into car manufacturing initially made fun of automakers by saying they still lived in "primitive society" in applying IT and they followed the beaten track with so low efficiency -- even the most intelligent vehicle still lagged behind smartphone by generations in terms of connectivity.

The truth is that chip computing, network transmission and infrastructure still fall short of basic requirements of automobile industry, and intelligent and connected trends of cars still have not been pushed ahead on a gigantic scale.

Connected car alone is little more than a "top student" with high IQs but low EQs.

Connected cars that can only predict intentions of other road users without communicating with surroundings, just act like a "straight-A student" who is a low EQ intellectual performing well on campus (simple traffic scene) but probably falling flat in society (complicated traffic scene).

Human drivers can communicate with pedestrians by expression in their eyes and gestures when crossing an intersection with no traffic signals, through which both drivers and pedestrians can know who will go first. Automated vehicles are however incapable of intentional communication in spite of sensors.

Traffic environment is quite complex and changeable, especially in China where several traffic scenes co-exist under mixed traffic flow. Current automated vehicles have yet to experience so many scenes to travel safely that commercialization of connected cars is faced with high risks.

If wanting to well know intentions of other traffic participants, connected cars undoubtedly need to communicate with them and surroundings. CVIS and V2X then play a key part.

Advantages of CVIS

Cooperative vehicle-infrastructure system (CVIS) can acquire vehicle and road information by use of wireless communication and sensor detection technologies, allowing interaction and data sharing between vehicles, between vehicles and infrastructures. The system is a good solution to intelligent communication and coordination between vehicles and infrastructures, making system resources used in a more efficient way, enabling safer road traffic and reducing traffic jams. CVIS is a new trend for intelligent transportation system (ITS).

CVIS is an interaction that interprets the intentions of traffic participants with great precision. It not only guesses what the car is going to do, but also perceives the situation accurately, so that it can make correct judgments.

In addition to interactive capabilities, CVIS can substantially improve perception of autonomous vehicles. Vision, radar, LiDAR and other sensors can be mounted on cars and street light poles which evolve into all-in-one signal poles, all-in-one traffic poles, and all-in-one electric alarm poles. The simultaneous perception of cars and road terminals can minimize blind zones and notify the collision out of sight in advance.

Road terminals deliver enough instructions and suffice the decision-making of autonomous vehicles whose complexity will be reduced remarkably and costs will get much lowered because they need not go through all scenarios. Accordingly, autonomous driving will be earlier commercialized than expected.

In addition to the perception and communication facilities at cars and roads, Ministry of Transport of the People's Republic of China (MOT) is planning to transform roads into intelligent ones and suit them for autonomous driving.

In February 2018, Ministry of Transport issued Notice of MOT's General Office on Accelerating the Next-Generation National Traffic Control Network and Smart Highway Pilots, proposing to focus on traffic control network and smart roads, involving: (1) digitalization of infrastructure, (2) integrated road transport CVIS, (3) synthetic application of Beidou high-precision positioning, (4) integrated management of road network based on big data, (5) "Internet +" road network integrated services, (6) the new generation of national traffic control network. It is decided in the Notice that smart road trials will accelerate to be carried out in provinces including Beijing, Hebei, Jilin, Jiangsu, Zhejiang, Fujian, Jiangxi, Henan, and Guangdong.

CVIS has just emerged, while the race in autonomous driving enters the second half.

Intelligent Transportation Systems (ITS) has been developing for many years. As the advanced stage of ITS, CVIS deals with technologies such as intelligent onboard system technology, intelligent road test technology, and V2X.

Intelligent onboard system technology and automotive intelligent technology have great common ground, but the perception of the road surface partly depends on the road test unit.

In short, the "smart cars + intelligent roads + CVIS" eligible for fully autonomous driving has just begun. Despite the automotive intelligence of giants like Waymo and Tesla grows mature, it is still far away from fully autonomous driving. The competition in autonomous driving is ushering in the second half when infrastructure will get improved and the market space for car manufacturing will be narrowing, while the market of operations, applications and services will be developing apace.

Competitiveness will be increasingly shown from such technical capabilities as chassis control, sensing systems, chips, power batteries, communication systems, artificial intelligence, intelligent roads, CVIS, big data, cloud computing, etc., and cross-industry competition and cooperation will be an forever subject.

In the second half, most small- and medium-sized enterprises will have to give in to giants (such as Velodyne) with strong core competencies. It is crucial to choose a reliable technical route, because a variety of embedded LINUXs in the early stage of smart phones vanished long ago; it is very important to define the appropriate product positioning, because core parts suppliers outlive vendors of complete machines; it is vital to keep abreast of the developments in the industry since the complexity and scope of the autonomous driving industry is far beyond imagination and new competitors flock to the industry all the time.

As abovementioned, Tesla, who temporarily goes ahead of others, may not be able to take the lead for a long time. Powerful Huawei, Apple and other giants have not yet exerted themselves utterly, which means the second half of autonomous driving contest has just kicked off.

Table of Contents

1 CVIS & V2X

  • 1.1 What is CVIS?
  • 1.2 Autonomous Driving Requires CVIS
  • 1.3 CVIS Plays a Key Role in Future ITS
  • 1.4 Core Technologies for CVIS
  • 1.5 Progress of CVIS in the United States
    • 1.5.1 Timeline for CVIS & V2X in the United States
    • 1.5.2 Distribution of CVIS & V2X Tests in the United States
  • 1.6 Progress of CVIS in Europe
    • 1.6.1 The Three CVIS Projects in Europe
    • 1.6.2 Timeline for ITS Tests in Europe during 2014-2018
    • 1.6.3 Milestones of ITS in Europe during 2016-2020
  • 1.7 Progress of CVIS in Japan
    • 1.7.1 Institutions Engaged in CVIS in Japan
    • 1.7.2 Contents of CVIS in Japan
    • 1.7.3 VICS of CVIS in Japan
    • 1.7.4 700MHz ITS of CVIS in Japan
  • 1.8 Applied Scenarios of CVIS
    • 1.8.1 CVIS Technologies Applied at Intersections
    • 1.8.2 CVIS Technologies Applied at Critical Sections
  • 1.9 Full Implementation of the First Urban CVIS Platform in China

2 V2X & DSRC

  • 2.1 Key Technologies for Automotive Communications
  • 2.2 Definition of V2X
  • 2.3 Why Is V2X Needed?
  • 2.4 Cases of V2X Applied
  • 2.5 V2X Services
  • 2.6 Two Standards for V2X
  • 2.7 V2X Communication System Structure
  • 2.8 Support for V2X from Governments Worldwide
  • 2.9 China's First Association Standards for V2X Application Layer
  • 2.10 Development Stages of V2X
  • 2.11 Estimated Shipments of Cellular Modem Worldwide
  • 2.12 Frequency Band of V2X
  • 2.13 Definition of DSRC
  • 2.14 Comparison between C-V2X and DSRC
  • 2.15 The Demand for Base Stations from DSRC

3 C-V2X

  • 3.1 Definition of C-V2X
  • 3.2 Timeline for C-V2X Applied in Autonomous Driving
  • 3.3 Advances of C-V2X Standards
    • 3.3.1 Advances of 3GPP V2X Standards
    • 3.3.2 Timeline for Commercial Deployment of 5GAA for C-V2X (V2V/V2I)
    • 3.3.3 C-V2X Technology Tests and Commercial Application Program
  • 3.4 Status Quo of C-V2X Industry
  • 3.5 Progress of C-V2X Chip
  • 3.6 Progress of C-V2X in China
  • 3.7 Advances of C-V2X Standards in China
    • 3.7.1 Accomplishment of LTE-V2X Standard System in China
    • 3.7.2 Work Division of LTE-V2X Standard System in China
    • 3.7.3 Progress and Targets of C-V2X Tests and Demo Projects in China
    • 3.7.4 C-V2X Workgroup of IMT-2020 (5G) Promotion Team
    • 3.7.5 China Unicom's Timeline for C-V2X Deployment
  • 3.8 5GAA
    • 3.8.1 5G Development Roadmap
    • 3.8.2 5GAA Development Course
    • 3.8.3 Development of 5GAA Members

4 Intelligent Road

  • 4.1 Intelligent Road
  • 4.2 Six Directions of Intelligent Road Pilots
  • 4.3 Three Development Stages of Intelligent Road
  • 4.4 Role of Intelligent Road
  • 4.5 Construction of Intelligent Roads
  • 4.6 Technical Architecture of Intelligent Road
  • 4.7 Monitoring Indices of Intelligent Road
  • 4.8 Equipment and Facilities for Intelligent Road

5 Foreign CVIS & V2X Companies

  • 5.1 Qualcomm
    • 5.1.1 Moves in V2X
    • 5.1.2 Road Tests Worldwide
    • 5.1.3 Partners
    • 5.1.4 5G NR C-V2X
  • 5.2 NXP
    • 5.2.1 Collaboration with Hitachi
  • 5.3 Continental
    • 5.3.1 V2X with M2XPro
    • 5.3.2 V2X Road Test in Shanghai
  • 5.4 Aptiv
    • 5.4.1 V2X Solutions
    • 5.4.2 Suzhou United Laboratory
  • 5.5 Denso
    • 5.5.1 V2X Architecture
  • 5.6 Sierra Wireless
    • 5.6.1 Global Operation Centers
    • 5.6.2 OEM Solutions
  • 5.7 Telit
  • 5.8 Cohda Wireless
    • 5.8.1 V2X Solutions
    • 5.8.2 V2X Deployment in CTS
    • 5.8.3 Partners
  • 5.9 Savari
    • 5.9.1 Profile
    • 5.9.2 Savari Solutions
  • 5.10 Kapsch
    • 5.10.1 V2X Business
    • 5.10.2 V2X Roadside ITS Station
    • 5.10.3 V2X OBU
    • 5.10.4 V2X Evaluation Kit
    • 5.10.5 V2X Software
  • 5.11 Arada Systems
    • 5.11.1 DriveOn OEM DSRC Module
    • 5.11.2 Mobile V2X Device
    • 5.11.3 V2X Rearview MIRROR
    • 5.11.4 ROOF V2X Plug-in
  • 5.12 Autotalks
    • 5.12.1 Craton2 EVK
    • 5.12.2 PANGAEA5
    • 5.12.3 SECTON EVK
  • 5.13 U-blox
    • 5.13.1 V2X Chip
    • 5.13.2 Product Positioning
  • 5.14 DANLAW
    • 5.14.1 RSU
    • 5.14.2 V2X Antenna
    • 5.14.3 V2X AM Safety Device
  • 5.15 Nokia
    • 5.15.1 V2X Solutions
    • 5.15.2 Progress of V2X Business
  • 5.16 Commsignia
    • 5.16.1 V2X RSU
    • 5.16.2 V2X OBU
    • 5.16.3 V2X Stack

6 Chinese CVIS & V2X Companies

  • 6.1 Huawei
    • 6.1.1 V2X Products & Partners
    • 6.1.2 Moves in V2X
  • 6.2 China Datang Corporation
    • 6.2.1 V2X Products
    • 6.2.2 LIVE DEMO
    • 6.2.3 V2X Road Test
  • 6.3 Alibaba's Engagement in CVIS
  • 6.4 Baidu
    • 6.4.1 CVIS Solutions
  • 6.5 Nebula Link
    • 6.5.1 C-DAS Collaborative Driver Assistance System
    • 6.5.2 Open VPP: An Open Third-party Application Platform
    • 6.5.3 Nebula MPP & V-Platoon
  • 6.6 Unex Technology
    • 6.6.1 V2X OBU
    • 6.6.2 V2X RSU
    • 6.6.3 V2X System on Module
  • 6.7 CiDi.ai
    • 6.7.1 V2X-related Products
    • 6.7.2 Intelligent Connected Driving Solutions
    • 6.7.3 Solutions for Management on CVIS at Intersections
    • 6.7.4 Solutions for CVIS on Expressways
  • 6.8 Shenzhen Genvict Technologies
    • 6.8.1 CVIS
    • 6.8.2 Vehicle-mounted Terminals
    • 6.8.3 Roadside Facilities
    • 6.8.4 Applied Scenarios of CVIS
  • 6.9 Huali Technology
  • 6.10 China TransInfo Technology
  • 6.11 China Information Communication Technology (CICT)
  • 6.12 WanJi Technology
Back to Top