株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

世界と中国のHDマップ産業の分析 (2018年)

Global and China HD Map Industry Report, 2018

発行 ResearchInChina 商品コード 371057
出版日 ページ情報 英文 177 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=108.53円で換算しております。
世界と中国のHDマップ産業の分析 (2018年) Global and China HD Map Industry Report, 2018
出版日: 2019年01月10日 ページ情報: 英文 177 Pages
概要

HDマップ (高精度マップ) 市場はまだ立ち上がったばかりの市場であり、地図データ提供業者 (プロバイダー) やスタートアップ企業、大手自動車メーカー・部品サプライヤーなどが混在した状態となっています。中国の場合、外資系企業は政策的に排除されていますが、それでも新旧様々な企業があらゆる業界から参入してきています。

当レポートでは、世界と中国のHDマップ産業について調査分析し、収集モードと技術分析、市場状況、産業チェーン、主要プロバイダーなど、体系的な情報を提供しています。

第1章 HDマップ産業

  • 定義と基本技術
  • HDマップの役割
    • 車両のポジショニング (位置情報)
    • 走路計画・認識
    • 意思決定支援
  • HDマップ関連の規格
    • 自動運転用データ・チェーンとエコロジー
    • 自動運転用データ・チェーンの規格設定
  • HDマップの制作
    • 制作プロセス
    • 静的マップ用データの制作
    • 動的マップ用データの更新
  • HDマップの産業規模
  • HDマップの市場パターン
  • 主要企業におけるHDマップ用データ収集の要点
  • HDマップ開発時の課題
  • HDマップの開発動向

第2章 HDマップ用のサポート技術とデータ

  • HDマップ用サポート技術
  • HDマップ用データの収集
  • MobileyeとHDマップ
    • HDマップ技術
    • HDマップ事業
    • マップ制作・整備コストの削減
    • データ収集の最新動向
  • Bosch HD Technology
  • Qianxun SI
    • 自動運転用の高精度ポジショニング・ソリューション
    • テレマティクス用の高精度ポジショニング・ソリューション
    • Space Time City Brain Project
    • 発展の方向性
  • DMP (Dynamic Map Planning)
    • DMPのデータフロー
    • QZSSとの今後のコンビネーション
  • Yujing Car
  • GEO Technology
    • 開発計画
    • 中核的な優位性
    • HDマップ用のデータ収集

第3章 中国の地図データ提供業者

  • AutoNavi (amap.com)
  • Baidu Map
  • NavInfo
  • Tencent Map
  • Leador
  • eMapgo Technologies
  • Careland
  • Ditu Technology
  • Momenta
  • Wuhan KOTEI Big Data Corporation

第4章 世界の地図データ提供業者

  • Here
  • TomTom
  • Google Map
  • ゼンリン
  • Increment P

第5章 HDマップ市場のスタートアップ企業

  • KuanDeng Technology
  • Wayz.ai
  • DeepMotion
  • Dilu Technology
  • DeepMap
  • Civil Maps
  • Ushr
  • Mapbox
  • lvl 5
  • Carmera
  • TrafficData

第6章 標準化団体

  • HDマップの関連規格
  • NDS
  • ADASIS
  • SENSORIS
  • OpenDrive
  • CAICV HD MAP WG

サマリー

目次

HD map industry study: the HD map market is burgeoning with the roll-out of L3 autonomous vehicles.

The automakers (except Volvo, Ford and NIO that claimed a leap over L3) have set foot in L3 autonomous vehicle successively, and most of them are scheduled to launch L3 models in 2020.

As HD map is indispensable to an L3 self-driving car, the HD map market ushers in a period of rapid growth.

With the advances in HD map, the map providers are turning to the data services and getting data update service charges annually. HD map has a unit price at least five times higher than traditional navigation map (about 200 yuan/vehicle) and subsequent service fee stands at 100 yuan/year or so. In 2019, AutoNavi (amap.com) introduced the standard HD map fee below 100 yuan/year per vehicle, facilitating the prevalence of HD map.

As expected, the Chinese HD map market will be worth more than RMB9 billion in 2025.

The HD map market is now in its infancy and it has not been spawned yet, but the market will be booming after 2021 when more and more intelligent connected vehicles, or ICVs will be packed with HD map with the launch of L3 self-driving vehicle models. It can be seen from use of HD map in automakers' L3 self-driving cars to be soon mass-produced that the map leaders like Amap, Baidu Map, NavInfo and eMapgo stay ahead in HD map application.

In addition to HD map services for third parties, more companies applied in 2019 to be the eligible providers of electronic navigation mapping with class-A qualification, such as DiDi, Huawei and SF Express. JD.com is primarily focused on the maps for unmanned delivery vehicle often running on the non-motorway and JD thus needs to collect the HD map data about the non-motorway.

HD map is used mainly in the three including mobility service market, enclosed areas and parking areas. As concerns mobility service, the map providers like Baidu have tried mobility services such as RoboTaxi in China and beyond. In respect of enclosed area, SAIC has conducted a trial project "5G+L4 self-driving heavy truck" at the Shanghai Yangshan Deepwater Port. What's more, AVP (automated valet parking) remains a hotspot over the past two years, and the map providers like Baidu and eMapgo have already launched the map solutions for automated parking.

HD map is not only for autonomous vehicle but serves as a stimulus to the development of intelligent connected roads. In September 2019, the State Council put forward the importance of smart connected road construction in the Program of Building National Strength in Transportation. At the same time, China Highway and Transportation Society (CHTS) also issued the Levels of Intelligent Connected Roads and Interpretations. It is now at the L1 in China.

In the next three years, a total of about RMB75 billion will be invested to build intelligent road projects in China. HD map will be an integral part of smart road and will be onto the cloud as a platform. Moreover, it offers a unified space benchmark for roads. HD map is also an important carrier of smart road toll collection by service.

HD map is an emerging industry and is still short of unified industrial criteria, and the map vendors still apply de facto standard. An industrial standard will not be developed until the massive use of HD map in self-driving cars. China Autonomous Driving Map Working Group plans to nail down all kinds of autonomous driving map related standards and testing standards in 2022.

Table of Contents

1 HD Map Industry

  • 1.1 Concept of HD Map and Technologies
    • 1.1.1 Concept of HD Map and Technologies
    • 1.1.2 HD Map Composition
    • 1.1.3 HD Map Format
    • 1.1.4 ADAS MAP
    • 1.1.5 HAD MAP
    • 1.1.6 HD Map for L4
    • 1.1.7 Dynamic Map
    • 1.1.8 Static Map
  • 1.2 Role of HD Map
    • 1.2.1 Vehicle Positioning
    • 1.2.2 Path Planning and Perception
    • 1.2.3 Decision Aid
    • 1.2.4 HD Map for Simulation
    • 1.2.5 HD Map for V2X
    • 1.2.6 Difficulties in HD Map Application
  • 1.3 Standards on HD Map
    • 1.3.1 Autonomous Driving Data Link and Ecosystem
    • 1.3.2 Map Standards
  • 1.4 Production and Maintenance of HD Map
    • 1.4.1 Production Process
    • 1.4.2 Data Production of Static Map
    • 1.4.3 Data Update of Dynamic Map
    • 1.4.4 Tools for Acquisition of Dynamic Map
    • 1.4.5 Maintenance of HD Map
  • 1.5 HD Map Market Size
  • 1.6 Competitive Pattern of HD Map
  • 1.7 Challenges for Development of HD Map
    • 1.7.1 Mapping Costs of HD Map
    • 1.7.2 Technical Complexity
    • 1.7.3 Frequency of HD Map Updates
  • 1.8 Development Trend of HD Map
    • 1.8.1 From Professional Mapping to Crowdsourcing Update
    • 1.8.2 Elimination of Perceptual Error
    • 1.8.3 Diversified Competition
    • 1.8.4 HD Map Gets Used Increasingly with Mass Production of L3 Autonomous Vehicle
    • 1.8.5 Facilitate the Development of Intelligent Roads

2 HD Map Supporting Technologies and Data

  • 2.1 HD Map Supporting Technology
  • 2.2 Data Acquisition of HD Map
  • 2.3 Mobileye and HD Map
  • 2.4 Bosch HD Map Technology
  • 2.5 Qianxun SI
  • 2.6 Dynamic Map Planning

3 Chinese Map Providers

  • 3.1 AutoNavi (amap.com)
  • 3.2 Baidu Map
  • 3.3 NavInfo
  • 3.4 Tencent Map
  • 3.5 Leador
  • 3.6 eMapgo (EMG)
  • 3.7 DiTu (Beijing) Technology
  • 3.8 Momenta
  • 3.9 Wuhan KOTEI Big Data Corporation
  • 3.10 Jiangsu Zhitu Technology
  • 3.11 JD Logistics
  • 3.12 Photool Technology
  • 3.13 Huawei Map
  • HD Map Development Roadmap of Chinese Map Providers
  • HD Map Technology Analysis of Three Leading Chinese Map Providers
  • HD Map Orders of Three Leading Chinese Map Providers

4 Foreign Map Providers

  • 4.1 Here
  • 4.2 TomTom
  • 4.3 Waymo
  • 4.4 Zenrin
  • 4.5 Increment P

5 HD Map Starups

  • 5.1KuanDeng Technology
  • 5.2 Deep Map
  • 5.3 Civil Maps
  • 5.4 lvl 5
  • 5.5 Carmera
  • 5.6 Wayz.ai
  • 5.7 Ushr
  • 5.8 DeepMotion
  • 5.9 Mapbox
  • 5.10 Dilu Technology
  • 5.11 TrafficData
  • 5.12 Netradyne

6 Standardization Organizations

  • 6.1 NDS
  • 6.2 ADASIS
  • 6.3 SENSORIS

7 Conclusions

  • HD Map Market Players
  • Comparison between Foreign HD Map Companies
  • Comparison between Chinese HD Map Companies (I)
  • Comparison between Chinese HD Map Companies (II)
  • HD Map Business Model
  • Applied Scenarios of HD Map