株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

5G通信への道:技術、用途、市場評価

Roads to 5G Communications: Technologies, Applications and Markets Assessment

発行 PracTel, Inc. 商品コード 930665
出版日 ページ情報 英文 251 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=109.88円で換算しております。
5G通信への道:技術、用途、市場評価 Roads to 5G Communications: Technologies, Applications and Markets Assessment
出版日: 2020年03月20日 ページ情報: 英文 251 Pages
概要

5G無線通信システムとは、複数の無線アクセス技術を一体化させた統合システムです。 2020年までには、情報化社会の要求を包括的に満たすべく、幅広い用途やサービスに対応できるようになっています。技術的観点からみれば、5Gとは現状の無線アクセス技術の継続的な改良の成果であり、また将来的な需要増加に対応できる無線アクセス技術の開発の動きでもあります。増加の一途にある強化と進化であり、また、増大する将来の需要を満たすための新しい無線アクセス技術の開発でもあります。 5Gは、データや接続性、ユーザーエクスペリエンスとして特徴付けることができます。

当レポートでは、5Gへの移行の時期における主流技術 (とその市場・用途・その他の特徴) について分析しております。

第1章 イントロダクション

第2章 取り組み

  • 組織
  • 5Gのタイムテーブルと主なタスク (3GPP-ITU)
    • 3GPPのリーダーシップ
    • 必要条件
    • 3GPPの構造
    • 5G RANの開発
  • 5G活動の調査
    • 欧州
    • NGMN (次世代モバイルネットワーク) アライアンス
    • 5G Americas
    • GSMA
    • ITU
    • 主要な5Gドキュメント

第3章 現在の開発:5Gテクノロジー

  • 特徴
  • 有望な方向
    • 必要条件
    • 共通の視点
    • 未来-今日から始まる
  • 課題
  • 利用事例
    • 全般的な傾向
    • モバイルブロードバンド
    • 自動車
    • スマート社会

第4章 ソフトウェア定義無線 (SDR)/コグニティブ無線 (CR) -5G

  • 周波数帯域の利用
  • 共通の目標
  • ニーズ
  • 役割
  • 目的
  • 定義 (WIF、FCC、ITU)
    • コグニティブ無線 (CR) の種類
    • コグニティブ無線 (CR) のプロセス
  • 汎用性
  • 組織と規制
    • Wireless Innovation Forumの立場
    • FCC
    • オブジェクト管理グループ
    • ETSI
  • 決定
  • CR/SDRの能力
  • 要素
  • 実用化の事例
  • 軍隊におけるSDR
    • SCA
  • CR/SDR:実用面での利点
  • 影響
  • 相違点
  • 市場
    • 環境
    • 現状
    • 費用
    • 異なる視点
    • 促進要因
    • 市場予測
  • 業界
    • Aeronix (SDRコンポーネント)
    • AirNet Communications (SDR基地局)
    • Carlson Wireless (プラットフォーム)
    • Cisco (無線)
    • CRT (CR SW)
    • DataSoft (SDR設計、SW)
    • Etherstack (ソフトウェア)
    • Green Hills (ソフトウェア)
    • L3Harris (SDR)
    • Huawei (プラットフォーム)
    • NI (ミリ波CR/SDR)
    • Nokia (基地局)
    • Nutaq
    • Rockwell Collins (無線)
    • SELEX ES (Leonardoの子会社)
    • Thales (無線)
    • TI (チップ)
    • Wind River (ソフトウェア)
    • ZTE (プラットフォーム)
  • 5G:CR/SDRの不可欠性

第5章 MIMOおよび5G通信

  • 沿革
  • コンセプト:無線通信におけるMIMO
    • 主要な技術
  • MIMOの種類
  • 5G-MIMOの仕様
    • MMIMOの定義
    • MMIMOのプロパティ
  • MIMOの利点
  • 業界
    • Blue Danube
    • Beecube (NIの子会社)
    • Nutaq
    • ZTE

第6章 ミリ波Wi-Fi

  • 目標
  • 全般的な状況
  • 60 GHz帯域の周波数の仕様
    • 周波数割り当て
    • 酸素吸収
  • アンテナ
  • 60 GHzでの放射制限
  • 複合効果
  • チップ技術の進歩
    • 課題と取り組み
    • 変調
    • 詳細
  • サマリー
  • 目論見書:60 GHz Wi-Fi
    • 利点と問題
    • WiGigアライアンス
    • IEEE 802.11ad:60GHz Wi-Fi
  • 業界
    • Blu Wireless
    • Intel
    • Nitero (2017年にAMDが買収)
    • Qualcomm
    • Peraso
    • Samsung
    • Tensorcom
    • TP-Link
  • 市場に関する考察
    • 市場促進要因
    • 利用モデル
    • 市場の推定
  • IEEE P802.11ay
    • 目的と時間枠
    • 範囲
    • 業界
      • Blu Wireless
      • Qualcomm

第7章 可視光通信 (VLC) - 5Gテクノロジー

  • 全般的傾向
    • 促進要因
    • 産業活動
  • VLC標準の開発
    • IEEE 802.15.7-2018規格
    • IEEE 802.15.13標準
    • IEEE 802.11bb規格
    • VLCA
    • JEITA (電子情報技術産業協会)
    • Li-Fi Consortium
    • ITU G.9991
  • VLCチャネルの詳細
    • 全般的傾向
    • 通信チャネルの構造
    • 送信機 (レシーバー)
    • 受信機 (トランスミッター)
    • 主な特徴
    • 主な課題
  • 企業と組織
    • カシオ計算機
    • Firefly
    • Fraunhofer IPMS
    • LVX
    • LightBee
    • 中川研究所
    • 日本電気
    • Oledcomm
    • Outstanding Technology
    • PureVLC-PureLi-Fi
    • Qualcomm
    • Supreme Architecture
  • 市場
  • 5Gの視点
    • Attocell
    • 細胞構造
  • 主な用途
    • 高度道路交通システム (ITS)
    • 光無線LAN
    • 医療
    • ローカリゼーション
    • 都市規模の無線ネットワーク
    • 海中通信
    • サマリー

第8章 5Gとスモールセルの開発

  • 合理的な理由
  • 市場構造
    • グループ
  • 背景事情
  • 用途
    • 屋内での使用例
    • 屋外での使用例
    • 公安コミュニケーション
    • 概要
  • 利点と問題
  • スモールセル市場
    • 市場の地域構造
    • 推定
  • 標準化
    • 組織
  • スモールセル業界
    • Airspan
    • AirHop Communications
    • Alpha Networks
    • Argela
    • Broadcom (Avagoが2015年に買収)
    • Cavium
    • Cisco
    • CommScope
    • Contela
    • Ericsson
    • 富士通
    • Huawei
    • ip.access
    • Intel
    • Gilat
    • Juni
    • 日本電気
    • Nokia
    • Qualcomm
    • Radisys
    • Samsung
    • Spider Cloud (Corning)
    • Tektelic
    • TI
    • Xilinx
    • ZTE

第9章 結論

添付資料I:LTE-MIMO関連の特許調査 (2017~2020年)

添付資料II:VLC関連の特許調査 (2017~2020年)

目次

The goal of this report is to address several current technologies (as well as their markets, applications and other characteristics) that, according to the ITU classifications, are transitioning to the 5G communications era.

Though, based on the industry insiders statistics, in 2019 market share of 4G networks was not more than 7%-12% on the global scale, the industry is already (2018-2020) supporting commercial 5G introduction in several market regions and applications.

This new radio access generation will be built on the existing infrastructure, which will be modernized and expanded with new technologies.

The 5G wireless communication system will be a converged system with multiple radio access technologies integrated together. It will be able to support a wide range of applications and services to comprehensively satisfy the requirements of the information society by the year 2020 and beyond. From the technology perspective, 5G will be the continuous enhancement and evolution of the present radio access technologies, and also the development of novel radio access technologies to meet the increasing demand of future. 5G can be characterized as data, connectivity and user experience.

There are two main views on 5G that exist today, which are frequently mixed together to form the basis of the 5G definition:

  • View 1 - The hyper-connected vision: In this view, 5G is seen as a blend of existing technologies (2G, 3G, 4G, Wi-Fi and others) that can deliver greater coverage and availability, higher network density in terms of cells and devices, and the ability to provide the connectivity that enables machine-to-machine (M2M) services and the Internet of Things (IoT).
  • View 2 - Next-generation radio access technology: This perspective outlines 5G in ‘generational' terms, setting specific targets that new radio interfaces must meet in terms of data rates (faster than 1Gbps downlink) and latency (less than 1ms delay).

The first view is connected with a gradual transition of 3G/4G (and other) technologies to the 5G era with appropriate enhancements and extensions. Some of such technologies are the subject of this report analysis. Particular, the following technologies, their markets, industries and applications are addressed in connection with their transition to 5G (they are being bundled under the title of 5G despite of the fact that they are already being brought to market by vendors and deployed by operators):

CR/SDR - Cognitive Radio/Software Defined Radio

Though the concept of CR/SDR is well known and the industry supports these techniques for a number of years, the 5G era will bring new requirements to networks characteristics that can be easy to fulfill with CR/SDR. The 5G “Network of Networks” needs further development of the CR/SDR concept responding on particulars of 5G and using the existing base of smart radios.

Small Cells

It is expected that small cells will prevail in the 5G infrastructure due to advanced features that satisfy 5G requirements.

mmWave Radio

mmWave Radio will play an important role in the 5G RANs, allowing to explore the vast amount of free spectrum.

MIMO

Complex smart antenna systems such as MMIMO expected to be used extensively.

Visible Light Communication

VLC open several important applications, which were difficult to utilize in other spectrum windows.

The report also addresses general requirements to 5G networking and surveys current 5G standardization activities. It also contains author's survey of recently approved patents related to VLC and MIMO technologies.

The report intends for a wide audience of technical and managerial staff involved in the development of advanced wireless communications.

Table of Contents

1.0. Introduction

  • 1.1. General - Basis
  • 1.2. Planning Wireless Technologies: Generations
  • 1.3. Goal
  • 1.4. Structure
  • 1.5. Research Methodology
  • 1.6. Target Audience

2.0. Efforts

  • 2.1. Organizations
  • 2.2. 5G Timetable and Major Tasks (3GPP-ITU)
    • 2.2.1. 3GPP Leadership
    • 2.2.2. Requirements
    • 2.2.3. 3GPP Structure
    • 2.2.4. 5G RAN Development
      • 2.2.4.1. Operation above 6 GHz
      • 2.2.4.2. Coordination between RAN and SA
      • 2.2.4.3. Acceleration
      • 2.2.4.4. Leaders
  • 2.3. 5G Activity Survey
    • 2.3.1. EU
      • 2.3.1.1. METIS 2020
      • 2.3.1.2. 5G PPP
        • 2.3.1.2.1. 5G Norma
        • 2.3.1.2.2. 5G Tango
        • 2.3.1.2.3. Phase 2
    • 2.3.2. Next Generation Mobile Networks (NGMN) Alliance
      • 2.3.2.1. NGMN and 5GAA
      • 2.3.2.2. 5G White Papers
    • 2.3.3. 5G Americas
    • 2.3.4. GSMA
    • 2.3.5. ITU
    • 2.3.6. Major 5G Documents

3.0. Current Developments: 5G Technologies

  • 3.1. Characteristics
  • 3.2. Promising Directions
    • 3.2.1. Requirements
    • 3.2.2. Common Views
      • 3.2.2.1. Spectrum
    • 3.2.3. Future - Starts Today
  • 3.3. Issues
  • 3.4. Use Cases
    • 3.4.1. General -Characteristics
    • 3.4.2. Mobile Broadband
    • 3.4.3. Automotive
    • 3.4.4. Smart Society

4.0. Software Defined and Cognitive Radio -5G

  • 4.1. Spectrum Utilization
  • 4.2. Common Goal
  • 4.3. Needs
  • 4.4. Role
  • 4.5. Purpose
  • 4.6. Definition (WIF, FCC, ITU)
    • 4.6.1. CR Types
    • 4.6.2. CR Process
  • 4.7. Versatility
  • 4.8. Organizations and Regulations
    • 4.8.1. Wireless Innovation Forum Position
      • 4.8.1.1. SDR Classifications
      • 4.8.1.2. CR Features
    • 4.8.2. FCC
      • 4.8.2.1. Equipment Type
      • 4.8.2.2Process
      • 4.8.2.3. Clarifications
      • 4.8.2.4. Application Guide
    • 4.8.3. Object Management Group
    • 4.8.4. ETSI
  • 4.9. Decisions
  • 4.10. CR/SDR Abilities
  • 4.11. Elements
  • 4.12. Commercial Use Cases
  • 4.13. SDR in Military
    • 4.13.1. SCA
  • 4.14. CR/SDR: Applications Benefits
  • 4.15. Impact
  • 4.16. Differences
  • 4.17. Market
    • 4.17.1. Landscape
    • 4.17.2. Trends
    • 4.17.3. Cost
    • 4.17.4. Different Perspective
    • 4.17.5. Drivers
    • 4.17.6. Market Forecast
      • 4.17.6.1. Model Assumptions
      • 4.17.6.2. Estimate
  • 4.18. Industry
    • Aeronix (SDR Components)
    • AirNet Communications (SDR Base Stations)
    • Carlson Wireless (Platform)
    • Cisco (Radio)
    • CRT (CR SW)
    • DataSoft (SDR Design, SW)
    • Etherstack (Software)
    • Green Hills (Software)
    • L3Harris (SDR)
    • Huawei (Platform)
    • NI (mmWave CR/SDR)
    • Nokia (Base Station)
    • Nutaq
    • Rockwell Collins (Radios)
    • SELEX ES (A Leonardo Company)
    • Thales (Radio)
    • TI (Chips)
    • Wind River (Software)
    • ZTE (Platforms)
  • 4.19. 5G: Needs CR/SDR

5.0. MIMO and 5G Communications

  • 5.1. History
  • 5.2. Concept: MIMO in Wireless Communications
    • 5.2.1. Major Techniques
  • 5.3. Types of MIMO
  • 5.4. 5G - MIMO Specifics
    • 5.4.1. MMIMO Definition
    • 5.4.2. MMIMO Properties
  • 5.5. MIMO Benefits
  • 5.6. Industry
    • Blue Danube
    • Beecube (NI Company)
    • Nutaq
    • ZTE

6.0. mmWAVE Wi-Fi

  • 6.1. Goal
  • 6.2. General
  • 6.3. 60 GHz Band Spectrum Specifics
    • 6.3.1. Frequencies Allocation
      • 6.3.1.1. FCC 60 GHz Band Extension
    • 6.3.2. Oxygen Absorption
  • 6.4. Antenna
  • 6.5. Radiation Limiting at 60 GHz
  • 6.6. Combined Effect
  • 6.7. Progress in Chip Technology
    • 6.7.1. Challenges and Efforts
    • 6.7.2. Modulation
    • 6.7.3. Specifics
      • 6.7.3.1. Indoor Behavior
  • 6.8. Summary
  • 6.9. Prospectus: 60 GHz Wi-Fi
    • 6.9.1. Benefits and Issues
    • 6.9.2. WiGig Alliance
      • 6.9.2.1. Use Cases
      • 6.9.2.2. Union
    • 6.9.3. IEEE 802.11ad - 60 GHz Wi-Fi
      • 6.9.3.1. 5G and 802.11ad
        • 6.9.3.1.1. 5G Spectrum Extension
      • 6.9.3.2. Status
      • 6.9.3.3. Coexistence
      • 6.9.3.4. Scope
      • 6.9.3.5. Channelization
      • 6.9.3.6. PHY
      • 6.9.3.7. MAC
      • 6.9.3.8. Specification Features
      • 6.9.3.9. Summary
      • 6.9.3.10. Extended 60 GHz Band
  • 6.10. Industry
    • Blu Wireless
    • Intel
    • Nitero (acquired by AMD in 2017)
    • Qualcomm
    • Peraso
    • Samsung
    • Tensorcom
    • TP-Link
  • 6.11. Market Considerations
    • 6.11.1. Market Drivers
    • 6.11.2. Usage Models
    • 6.11.3. Market Estimate
  • 6.12. IEEE P802.11ay
    • 6.12.1. Purpose and Time Frame
    • 6.12.2. Scope
      • 6.12.2.1. Channelization
      • 6.12.2.2. PHY Specifics
    • 6.12.3. Industry
      • Blu Wireless
      • Qualcomm

7.0. Visible Light Communication - 5G Technology

  • 7.1. General
    • 7.1.1. Drivers
    • 7.1.2. Industry Activity
      • 7.1.2.1. UC-Light Center
      • 7.1.2.2. Europe
  • 7.2. VLC Standards Development
    • 7.2.1. IEEE 802.15.7-2018 Standard
      • 7.2.1.1. Considerations
      • 7.2.1.2. Project
        • 7.2.1.2.1. Coexistence
        • 7.2.1.2.2. Essence
        • 7.2.1.2.3. Base
        • 7.2.1.2.4. Use Cases
        • 7.2.1.2.5. Physical Layer
          • 7.2.1.2.5.1. General
          • 7.2.1.2.5.2. Responsibilities
          • 7.2.1.2.5.3. Types
          • 7.2.1.2.5.4. Error Protection
          • 7.2.1.2.5.5. Rates
          • 7.2.1.2.5.6. Frequency Plan
          • 7.2.1.2.5.7. PHY Services
          • 7.2.1.2.5.8. Regulations
        • 7.2.1.2.6. MAC Layer
          • 7.2.1.2.6.1. Responsibilities
          • 7.2.1.2.6.2. Functionalities
          • 7.2.1.2.6.3. Channel Access
        • 7.2.1.2.7. Security
    • 7.2.2. IEEE 802.15.13 Standard
    • 3.2.3. IEEE 802.11bb Standard
    • 7.2.4. VLCA
      • 7.2.4.1. General
    • 7.2.5. Jeita
    • 7.2.6. Li-Fi Consortium
      • 7.2.6.1. Optical Mobility Technology
      • 7.2.6.2. Li-Fi Network
    • 7.2.7. ITU G.9991
  • 7.3. VLC Channel Specifics
    • 7.3.1. General
    • 7.3.2. Communications Channel Structure
    • 7.3.3. Transmitter
    • 7.3.4. Receiver
      • 7.3.4.1. Image Sensors
      • 7.3.4.2. LED as Receiver
    • 7.3.5. Major Characteristics
      • 7.3.5.1. General
      • 7.3.5.2. Modulation
      • 7.3.5.3. VLC Channel: Characteristics Summary
      • 7.3.5.4. Emerging Areas
      • 7.3.5.5. Limiting Factors
    • 7.3.6. Major Challenges
  • 7.4. Companies and Organizations
    • Casio
    • Firefly
    • Fraunhofer IPMS
    • LVX
    • LightBee
    • Nakagawa Laboratories
    • NEC
    • Oledcomm
    • Outstanding Technology
    • PureVLC-PureLi-Fi
    • Qualcomm
    • Supreme Architecture
  • 7.5. Market
  • 7.6. 5G View
    • 7.6.1. Attocell
    • 7.6.2. Cell Structures
  • 7.7. Major Applications
    • 7.7.1. Intelligent Transportation Systems
      • 7.7.1.1. Abilities
      • 7.7.1.2. Major Areas
    • 7.7.2. Optical Wireless LAN
    • 7.7.3. Healthcare
    • 7.7.4. Localization
    • 7.7.5. City Wide Wireless Network
    • 7.7.6. Underwater Communications
    • 7.7.7. Summary

8.0. 5G and Small Cells Development

  • 8.1. Rational
  • 8.2. Nomenclature
    • 8.2.1. Group
  • 8.3. Background
  • 8.4. Applications
    • 8.4.1. Indoor Use Cases
    • 8.4.2. Outdoor Use Cases
    • 8.4.3. Public Safety Communications
    • 8.4.4. Summary
  • 8.5. Benefits and Issues
  • 8.6. Small Cell Market
    • 8.6.1. Market Geography
    • 8.6.2. Estimate
  • 8.7. Standardization
    • 8.7.1. Organizations
      • 8.7.1.1. Small Cell Forum
      • 8.7.1.2. 3GPP
        • 8.7.1.2.1. First Standard
        • 8.7.1.2.2. Interfaces - 3GPP
        • 8.7.1.2.3. 3GPP Rel.12 and SCs
      • 8.7.1.3. Other
  • 8.8. Small Cell Industry
    • Airspan
    • AirHop Communications
    • Alpha Networks
    • Argela
    • Broadcom (acquired by Avago in 2015)
    • Cavium
    • Cisco
    • CommScope
    • Contela
    • Ericsson
    • Fujitsu
    • Huawei
    • ip.access
    • Intel
    • Gilat
    • Juni
    • NEC
    • Nokia
    • Qualcomm
    • Radisys
    • Samsung
    • Spider Cloud (Corning)
    • Tektelic
    • TI
    • Xilinx
    • ZTE

9.0. Conclusions

Attachment I: Patents Survey: LTE - MIMO (2017-2020)

Attachment II: VLC - related Patents Survey (2017-2020)

List of Tables

  • Figure 1: Mobile Technologies Generations
  • Figure 2: Time - Mobile Generations/Rates
  • Figure 3: OSI Layers - 4G and 5G
  • Figure 4: Global Mobile Data Traffic
  • Figure 5: ITU-R Schedule for IMT-2020
  • Figure 6: 3GPP - Tentative Timeline - 5G Standardization
  • Figure 7: Current View: Transition to 5G
  • Figure 8: 5G Spectrum
  • Figure 9: 5G Technologies Directions
  • Figure 10: 5G Use Cases-General Illustration
  • Figure 11: Use Cases - Rate of Transmission and Latency
  • Figure 12: SDR and OSI Reference Model
  • Figure 13: SDR - Structure
  • Figure 14: Estimate: Global Sales - SDR-based Equipment ($B)
  • Figure 15: SDR Market Geography (2019)
  • Figure 16: Major Antennas Configurations
  • Figure 17: MIMO Concept (2x2)
  • Figure 18: Illustration - Beamforming
  • Figure 19: MU-MIMO - Downlink
  • Figure 20: SU-MIMO and MU-MIMO
  • Figure 21: MMIMO
  • Figure 22: 60 GHz Network Scenarios
  • Figure 23: 60 GHz Frequencies Plan
  • Figure 24: 60 GHz Spectrum Details
  • Figure 25: Signal Attenuation in 60 GHz Band
  • Figure 26: Absorption Details - 60 GHz Signal
  • Figure 27: Bands Features Comparison
  • Figure 28: Wi/Gig Protocols/Planes
  • Figure 29: Use Cases - WiGig Alliance
  • Figure 30: Exploring IMT Spectrum
  • Figure 31: 802.11ad MAC Structure
  • Figure 32: Summary: 802.11ad Properties
  • Figure 33: Estimate: 802.11ad Chipsets Shipping - Global (Bil. Units)
  • Figure 34: Estimate: 802.11ad Chipsets Global Shipping ($B)
  • Figure 35: 802.11ay - Proposed Timeline
  • Figure 36: VLC - Comparison
  • Figure 37: Illustration-VLC Channel
  • Figure 38: VLC Market Categories
  • Figure 39: Estimate: VLC Market - Global ($B)
  • Figure 40: VLC Market Geography (2019)
  • Figure 41: mmWave Advantages
  • Figure 42: Macro vs Small BS - Shipped (Ratio)
  • Figure 43: BS: Characteristics and Classification
  • Figure 44: BS Types and Parameters
  • Figure 45: SC Use Cases
  • Figure 46: Estimate: SC Global Shipments (Mil. Units)
  • Figure 47: Estimate: Global SC Shipments ($B)
  • Figure 48: 3GPP Rel. 12 SC Enhancements
  • Figure 49: Scenario 1
  • Figure 50: Scenario 2

List of Tables

  • Table 1: Major Characteristics - 5G Networks
  • Table 2: 5G Use Case Families
  • Table 3: SDR Tiers
  • Table 4: CR Features
  • Table 5: ETSI Documents
  • Table 6: SDR Market - Factors
  • Table 7: SDR Market Segments (Military vs. Commercial)
  • Table 8: MIMO - 3GPP Releases
  • Table 9: MIMO Benefits
  • Table 10: 60 GHz Radio Technologies Standardization
  • Table 11: Antenna Directivity
  • Table 12: 60 GHz Links Characteristics
  • Table 13: 802.11ad Major Features
  • Table 14: 60 GHz Wi-Fi Usage Cases
  • Table 15: Use Cases - 802.15.7
  • Table 16: Devices and Characteristics - 802.15.7
  • Table 17: Frequency Plan - 802.15.7
  • Table 18: VLC Properties
  • Table 19: VLC, IR and RF Communications ITS Applications Comparison
  • Table 20: Locations Technologies-VLC Place