無料セミナー : 2018年10月23日『デジタルトランスフォーメーション2025年までの展望: 5G、OTTを中心として』 IDATE DigiWorld共同開催

株式会社グローバルインフォメーション
TEL: 044-952-0102
市場調査レポート

屋内パブリックセーフティー通信およびローカライゼーションの技術・市場

Indoor Public Safety Communications and Localization Technologies and Markets

発行 Practel, Inc. 商品コード 640334
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=110.90円で換算しております。
Back to Top
屋内パブリックセーフティー通信およびローカライゼーションの技術・市場 Indoor Public Safety Communications and Localization Technologies and Markets
出版日: 2018年05月04日 ページ情報: 英文
概要

当レポートでは、建物やトンネルなどの屋内環境においてファーストレスポンダーのオペレーションをサポートするワイヤレス通信およびローカライゼーション技術の仕様について調査し、関連産業、適用規格、および市場の分析を提供しています。

第1章 イントロダクション

第2章 PSCスペクトル

  • 米国
    • FCC:概要
    • 800 MHz帯
    • 700 MHz帯
  • EU
  • 世界

第3章 特有の検討事項

  • 要件:ファーストレスポンダー屋内通信
    • 概要
  • 選択
    • クラス
    • 特徴
  • 屋内通信の仕様
    • カバレッジ拡張

第4章 発展動向

  • スモールセルの開発
  • 術語体系
  • 背景
  • アプリケーション
    • 屋内の利用例
    • 屋外の利用例
    • パブリックセーフティー通信
    • サマリー
  • メリット・課題
  • スモールセル市場
    • 市場地域
    • 推計
  • 標準化
    • 組織
  • スモールセル産業
    • Airspan
    • AirHop Communications
    • Alpha Networks
    • Argela
    • Broadcom (acquired by Avago in 2015)
    • BTI Wireless
    • Cavium
    • Cisco
    • CommScope
    • Contela
    • Ericsson
    • Fujitsu
    • Huawei
    • ip.access
    • Intel
    • Gilat
    • Juni
    • NEC
    • Nokia
    • Qualcomm
    • Radisys
    • Samsung
    • Spider Cloud (Corning)
    • Tektelic
    • TI
    • Xilinx
    • ZTE
  • 分散アンテナシステム (DAS)
    • 概要
    • 定義
    • 分類
    • 活用
    • DASのメリット
    • フォーラム
    • パブリックセーフティー通信におけるDASの仕様
    • 市場
    • 産業

第5章 屋内ワイヤレス通信:市場推計

第6章 屋内ローカライゼーション

  • 標準化活動
  • 調査
  • 産業
    • Apple
    • Broadcom
    • Camero
    • decaWave
    • Google
    • indoo.rs
    • IndoorAtlas
    • iPosi
    • Motorola Solutions
    • NextNav
    • NIST
    • Pointer
    • Qualcomm
    • Q-Track
    • Skyhook Wireless
    • ViewPoint
    • Wifarer
  • 市場推計

第7章 FirstNetおよび屋内通信

  • 透明性
  • 契約
  • 差異
  • 当局

第8章 比較

  • DAS
  • C-RANスモールセル
  • スモールセルの課題

第9章 結論

付録I

付録II

目次

This report addresses specifics of wireless communications and localization technologies that support first responders operations inside of enclosures such as buildings, tunnels and similar structures. It also addresses related industries, applicable standards and markets.

Increasingly, public safety entities, commercial wireless service providers, and wireless users require reliable indoor communications. For public safety, reliable coverage is often essential throughout a broad jurisdiction, including coverage on-street, in-building, and in-tunnel. In such cases, there is no substitute for a properly designed dedicated mission-critical communications system with sufficient transmit sites to provide the level of signal required for reliable coverage anywhere within the jurisdiction, whether on-street or indoors.

Indoor wireless communications environments usually do not allow using traditional PSC (Public Safety Communications) networking based on TETRA, P25 or LTE. Building materials attenuate signals and this makes communications unreadable. Localization based on GPS techniques is becoming also questionable due to weak satellite signals inside of a construction.

All these factors make it necessary to develop special methods to extend outdoor communications channels inside of enclosures. Two such methods are analyzed in this report; and they are based on utilization:

  • Small Cells
  • DAS - Distributed Antenna Systems.

Small Cells base stations are small in size, lightweight and designed to serve up to several tens of users. They may be conveniently spread throughout a building, covering each corridor, hall, corners and so on. The technology relatively recently became commercialized and brought multiple benefits to users.

DAS is used for in-building signals distributions for at least twenty years. The report concentrates on advances in this technology, its specifics and issues.

Standard organizations activities, the in-depth market analysis and survey of the industry are also studied in this report.

There are multiple methods suggested for in-building localization of first responders as well as other people or objects in the operational area. They are based on utilization of sensors, RF signatures in a building, amplification of GPS signals and other. The report concentrates on commercialized methods, and provides details of their advantages and issues. The report also addresses marketing aspects of in-building localization; and surveys patents related to indoor localization.

The report is written for a wide audience of technical and managerial staff involved in the development of reliable PSC and localization inside buildings and other enclosures.

Table of Contents

1 Introduction

  • 1.1 Need
    • 1.1.1 Outdoor Environment
    • 1.1.2 Indoor Environment
    • 1.1.2.1 Legislation
    • 1.1.2.2 Signal Attenuation
    • 1.1.3 Transparency
  • 1.2 Unified In-Building Wireless
    • 1.2.1 Localization Services
    • 1.2.2 Solutions
  • 1.3 Public Safety Communications Specifics
  • 1.4 Scope and Goals
  • 1.5 Research Methodology
  • 1.6 Target Audience

2.0 PSC Spectrum

  • 2.1 U.S.
    • 2.1.1 FCC - General
    • 2.1.2 800 MHz Band
    • 2.1.3 700 MHz Band
    • 2.1.3.1 700 MHz Nationwide Network - FirstNet
  • 2.2 EU
  • 2.3 Global

3.0 Special Considerations

  • 3.1 Requirements: First Responders Indoor Communications
    • 3.1.1 General
  • 3.2 Choices
    • 3.2.1 Classes
    • 3.2.2 Properties
      • 3.2.2.1 Regulations
      • 3.2.2.2 Involved Parties
      • 3.2.2.3 Factors
  • 3.3 Specifics of In-building Communications
    • 3.3.1 Extended Coverage

4.0 Developmental Trends

  • 4.1 Small Cells Development
    • 4.1.1 Rational
  • 4.2 Nomenclature
    • 4.2.1 Group
  • 4.3 Background
  • 4.4 Applications
    • 4.4.1 Indoor Use Cases
    • 4.4.2 Outdoor Use Cases
    • 4.4.3 Public Safety Communications
    • 4.4.4 Summary
  • 4.5 Benefits and Issues
  • 4.6 Small Cell Market
    • 4.6.1 Market Geography
    • 4.6.2 Estimate
  • 4.7 Standardization
    • 4.7.1 Organizations
      • 4.7.1.1 Small Cell Forum
      • 4.7.1.2 3GPP
        • 4.7.1.2.1 First Standard
        • 4.7.1.2.2 Interfaces - 3GPP
        • 4.7.1.2.3 3GPP Rel.12 and SCs
      • 4.7.1.3 Other
  • 4.8 Small Cell Industry
    • Airspan
    • AirHop Communications
    • Alpha Networks
    • Argela
    • Broadcom (acquired by Avago in 2015)
    • BTI Wireless
    • Cavium
    • Cisco
    • CommScope
    • Contela
    • Ericsson
    • Fujitsu
    • Huawei
    • ip.access
    • Intel
    • Gilat
    • Juni
    • NEC
    • Nokia
    • Qualcomm
    • Radisys
    • Samsung
    • Spider Cloud (Corning)
    • Tektelic
    • TI
    • Xilinx
    • ZTE
  • 4.9 Distributed Antenna System (DAS)
    • 4.9.1 General
    • 4.9.2 Definition
    • 4.9.3 Classifications
    • 4.9.4 Utilization
    • 4.9.5 DAS Benefits
    • 4.9.6 Forum
    • 4.9.7 Specifics of DAS in Public Safety Communications
    • 4.9.8 Market
      • 4.9.8.1 General
      • 4.9.8.2 Cost Efficiency
      • 4.9.8.3 Market Drivers
      • 4.9.8.4 Forecast
    • 4.9.9 Industry
      • Boingo
      • Cobham
      • Comba
      • CommScope
      • Corning
      • Combilent
      • Crown Castle
      • Dali Wireless
      • Ethertronics
      • Microlab
      • Radio Frequency Systems
      • Shyam Telecom
      • SoliD
      • Westell
      • Zinwave

5.0 In-building Wireless Communications: Market Estimate

6.0 In-building Localization

  • 6.1 Standardization Activity
  • 6.2 Survey
  • 6.3 Industry
    • Apple
    • Broadcom
    • Camero
    • decaWave
    • Google
    • indoo.rs
    • IndoorAtlas
    • iPosi
    • Motorola Solutions
    • NextNav
    • NIST
    • Pointer
    • Qualcomm
    • Q-Track
    • Skyhook Wireless
    • ViewPoint
    • Wifarer
  • 6.3 Market Estimate

7.0 FirstNet and Indoor Communications

  • 7.1 Transparency
  • 7.2 Contract
  • 7.3 Differences
  • 7.4 Authorities

8.0 Comparison

  • 8.1 DAS
  • 8.2 C-RAN Small Cells
  • 8.3 Small Cells Issues

9.0 Conclusions

Attachment I: Patents Survey - Indoor Localization (2016-2018)

Attachment II: Codes

  • Figure 1: FCC PSC Spectrum Allocation
  • Figure 2: 800 MHz Reconfiguration Plan
  • Figure 3: 700 MHz Band
  • Figure 4: In-building Communications Systems - Classification
  • Figure 5: mmWave Advantages
  • Figure 6: Macro vs Small BS - Shipped (Ratio)
  • Figure 7: BS: Characteristics and Classification
  • Figure 8: BS Types and Parameters
  • Figure 9: SC Use Cases
  • Figure 10: Estimate: SC Global Shipments (Mil. Units)
  • Figure 11: Estimate: Global SC Shipments ($B)
  • Figure 12: 3GPP Rel. 12 SC Enhancements
  • Figure 13: Scenario 1
  • Figure 14: Scenario 2
  • Figure 15: Centralized and Distributed Architectures
  • Figure 16: Active DAS
  • Figure 17: Passive DAS
  • Figure 18: Hybrid DAS
  • Figure 19: General Layout
  • Figure 20: Estimate: DAS Equipment Sales - Global ($B)
  • Figure 21: Market Segments - DAS Types
  • Figure 22: Estimate: Global Market - In-Building Wireless Communications ($B)
  • Figure 23: Estimate-Global Market - FR in-Building Communications ($B)
  • Figure 24: Indoor Ranging - Standardization Activity (2015)
  • Figure 25: Estimate: Global Indoor Location Market ($B)
  • Figure 26: Estimate: Global Indoor Location Market - First Responders ($B)
  • Figure 27: Technical Characteristics
  • Table 1: RF Signals Attenuation (dB)
Back to Top