無料セミナー : 2018年10月23日『5G、OTTがもたらすデジタルトランスフォーメーション2025年までの展望』 IDATE DigiWorld共同開催

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

公衆安全通信 (PSC) の進歩:技術・マーケティング分析

Evolution of Public Safety Communications: Technological and Marketing Analysis

発行 PracTel, Inc. 商品コード 628061
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.70円で換算しております。
Back to Top
公衆安全通信 (PSC) の進歩:技術・マーケティング分析 Evolution of Public Safety Communications: Technological and Marketing Analysis
出版日: 2018年04月20日 ページ情報: 英文
概要

当レポートでは、公衆安全通信:PSC (P25/TETRA LMR) の技術・マーケティング分析および関連産業の調査を提供しており、LTEの仕様・技術・マーケティング・産業、FirstNetの現況、およびLTE-LMR-PSC 関連特許の調査などをまとめています。

第1章 イントロダクション

第2章 現在:「従来型」PSC技術

  • Project 25 (P25)
  • TETRA

第3章 P25およびTETRA

  • 概要
  • WTDMA:メリット・課題
  • 特徴
  • 修正箇所
  • 北米におけるTETRA

第4章 次世代PSC

  • 相互利益
  • 課題
  • 支援

第5章 LTEの詳細:PSC

  • デファクトスタンダード
  • ブロードバンドワイヤレス通信ステージ
  • LTEの主な機能
  • 詳細
  • LTEアドバンスト (LTE Advanced)
  • 自己組織化ネットワーク (SON)
  • 市場:LTE
  • 3GPPおよびPSC LTE
  • LTEのメリットのサマリー
  • 産業
  • サマリー:PSC向けLTEのメリット

第6章  FirstNet:構造・特徴

  • 概要
  • 初めに:計画
  • 相違:PSG通信
  • 設計:RFIおよびRFPプロセス
  • FirstNet:構造の詳細
  • FirstNet・LTEの電流制限:3GPP Releases
  • 業界の備え
  • パイロットプロジェクト
  • AT&T
  • Verizon

第7章 TETRA - LTE

  • 可能性 - Union
  • ETSI - TCCA
  • イングランド - ESMCP
  • その他の諸国

第8章 結論

付録I-III

目次

BRIEF

Development of Public Safety Communications (PSC) is an important part of governmental efforts to keep first responders well informed and safe in disastrous situations. The dynamics of technologies that support PSC require periodic review of multiple technical contributions and related markets' changes.

This report updates information on the development of PSC and on recent standardization efforts to support integration of commercial and private communications to provide cost efficient and feature-rich networking for first responders.

The report reflects the history of PSC and follows the road of their evolution. Two major groups of standards - P25 and TETRA - define specifics of PSC worldwide. These LMR standards are being in the development for at least twenty-two years and they supported and continue to support voice and relatively low-speed data that first responders' communications required. At the present time, P25 and TETRA standards are mostly completed and moved to the stage of maintenance and some enhancements.

In the last several years, commercial cellular communications achieved a significant progress in enhancing performance and economic characteristics, such as the speed of transmission, reliability, ability to communicate with fast moving objects, the cost factor and other. 4G technologies (such as LTE and WiMAX) proved their attractiveness; and the industry, especially R&D, is looking for introduction 5G technologies in 3-4 years.

The PSC community, which requires to enhance connectivity to support video and massive data files with high-speed reliable transmission as well as to improve other characteristics, such as network economics was investigating applicability of LTE for PSC; and this effort led to decision to adapt this commercial cellular technology that provides the economies of scales for critical communications and to build PSC networks based on the LTE technology. One such a network - the FirstNet - is being deployed as the U.S. nationwide first responders system. The FirstNet development is in the evolving stage; and its implementation has begun. Other countries are also experimenting with LTE network structures built specifically for PSC (in this report, we addressed such developments in England and other countries).

The report provides the detailed technical and marketing analysis of P25/TETRA LMR together with the survey of related industries. Then, it is concentrating on the specifics of LTE as a commercial technology that has to be adapted to carry PSC tasks; LTE technological and marketing specifics as well as the industry (as they relate to the report subject) are analyzed.

The 3GPP standardization work in this area is detailed. The report shows that the industry is already developing LTE-PSC equipment, though the complete set PSC-LTE standards is expected from the 3GPP only in 2019-2020.

The report also provides a detailed analysis of the current status of the FirstNet - the nationwide U.S. LTE-based PSC network. The process of the network design, its technical specifics as well as the structure of its governing are analyzed. Even in these early stages of LTE-PSC development, there is already competition on the nationwide scale.

The U.S. is not alone in adapting LTE for PSC - England and other countries are also involved in the construction LTE-PSC networks. The most advanced is S. Korea, which has already deployed such a network mostly utilizing Samsung equipment.

The report concludes that LMR and LTE-based PSC infrastructures will co-exist in the foreseeable future (7-9 years), complementing each other to provide high-speed data communications with narrowband voice, making communications rich with features and more reliable and cost-effective. Looking further in time, it seems that LTE-PSC will prevail (though, rapid progress in telecommunications may present even better future solutions).

The report also contains the survey of LTE-LMR-PSC related patents for 2016-2018 time frame.

The report is written for a wide audience of technical and managerial staff involved in the design and implementation of PSC networks as well as for users such networks.

Table of Contents

1.0 Introduction

  • 1.1 Status - Mixed Picture
  • 1.2 Requirements
  • 1.3 Scope and Goals
  • 1.4 Research Methodology
  • 1.5 Target Audience

2.0 Today: "Traditional" PSC Technologies

  • 2.1 Project 25 (P25)
    • 2.1.1 Standardization Process
      • 2.1.1.1 General
      • 2.1.1.2 Details
    • 2.1.2 Project 25/TIA 102: Scope
      • 2.1.2.1 Efforts
      • 2.1.2.2 Phased Approach
        • 2.1.2.2.1 Phases
          • 2.1.2.2.1.1 Phase I
          • 2.1.2.2.1.2 Phase II
    • 2.1.3 Status
    • 2.1.4 CAP
    • 2.1.5 P25 Development-Phase I
      • 2.1.5.1 General Mission and Objectives
      • 2.1.5.2 Compliance
      • 2.1.5.3 Benefits and Issues
      • 2.1.5.4 Technical Highlights- Interfaces
        • 2.1.5.4.1 Common Air Interface
        • 2.1.5.4.2 Fixed Station Interface
        • 2.1.5.4.3 Console Sub-System Interface (CSSI)
        • 2.1.5.4.4 RF Sub-system
        • 2.1.5.4.5 Inter-system Interface (ISSI)
          • 2.1.5.4.5.1 ISSI Technology
        • 2.1.5.4.6 Telephone Interconnect Interface
        • 2.1.5.4.7 Network Management Interface
        • 2.1.5.4.8 Host and Network Data Interfaces
        • 2.1.5.4.9 Summary: Interfaces
        • 2.1.5.4.10 Frequency Spectrum
          • 2.1.5.4.10.1 700 MHz Band
      • 2.1.5.5 Security
      • 2.1.5.6 Coding
      • 2.1.5.7 Advances
      • 2.1.5.8 Services
      • 2.1.5.9 Network Scenario
      • 2.1.5.10 Summary
    • 2.1.6 Development: P25 Phase II
      • 2.1.6.1 Transition
      • 2.1.6.2 Scope
      • 2.1.6.3 Interfaces - Phase II
      • 2.1.6.4 Attributes
      • 2.1.6.5 Data Services Standards
      • 2.1.6.6 Enhancements - Details
      • 2.1.6.7 Time and Documentation
    • 2.1.7 P25 Radio Market Analysis
      • 2.1.7.1 General
      • 2.1.7.2 Geography
      • 2.1.7.3 Market Drivers
      • 2.1.7.4 Market Forecast
        • 2.1.7.4.1 Considerations
          • 2.1.7.4.1.1 P25 Way
          • 2.1.7.4.1.2 Commercial Involvement
        • 2.1.7.4.2 Model Assumptions
        • 2.1.7.4.3 Estimate
    • 2.1.8 Summary: Phase I and Phase II
    • 2.1.9 P25 Industry
      • Avtec
      • Airbus DS (in 2017, P25 business was acquired by Motorola Solutions)
      • Codan (include P25/LTE solution)
      • Digital Voice System
      • Etherstack (include P25/LTE solution)
      • EF Johnson (a JVCKENWOOD company)
      • Harris (LMR/LTE)
      • Icom America
      • Kenwood
      • Motorola Solutions (P25/LTE)
      • PowerTrunk (a Hytera company)
      • Relm Wireless
      • Simoco
      • Technisonic Industries
      • Tait Communications
      • Westel
  • 2.2 TETRA
    • 2.2.1 General
      • 2.2.1.1 TCCA
      • 2.2.1.2 Major Milestones
    • 2.2.2 TETRA: Scope-Release I
      • 2.2.2.1 General
      • 2.2.2.2 Spectrum Regulations
      • 2.2.2.3 TETRA and GSM
      • 2.2.2.4 Main Features
      • 2.2.2.4.1 Functionalities
      • 2.2.2.4.2 Technical Details
      • 2.2.2.4.3 Services
      • 2.2.2.5 Benefits
      • 2.2.2.6 Networking
      • 2.2.2.7 Release I Details
        • 2.2.2.7.1 General
        • 2.2.2.7.2 Interfaces
        • 2.2.2.7.3 Infrastructure
        • 2.2.2.7.4 Call Types
      • 2.2.2.8 Mobiles
      • 2.2.2.9 Security
      • 2.2.2.10 Summary
    • 2.2.3 TETRA Release II
      • 2.2.3.1 History
      • 2.2.3.2 Drivers
        • 2.2.3.2.1 Rational
      • 2.2.3.3 Two-track Approach
      • 2.2.3.4 Applications
      • 2.2.3.5 Trunked Mode Operation (TMO) Range Extension
      • 2.2.3.6 Mixed Excitation Liner Predictive, Enhanced (MELPe) Voice Codec
      • 2.2.3.7 Data Services Development
        • 2.2.3.7.1 TAPS
        • 2.2.3.7.2 TEDS
      • 2.2.3.8 Comparison
      • 2.2.3.9 Enhancements
    • 2.2.4 Market Analysis
      • 2.2.4.1 General
      • 2.2.4.2 Geography
      • 2.2.4.3 Market Drivers-Industries-Applications
      • 2.2.4.4 Model Assumptions
      • 2.2.4.5 Estimate
    • 2.2.5 Industry
      • Airbus DS (include TETRA/LTE)
      • DAMM Cellular
      • Etelm (TETRA - LTE)
      • EtherStack
      • Hytera (include TETRA over LTE)
      • Motorola Solutions
      • Pegasus Network
      • Portalify (a Hytera company)
      • Rohill
      • Sepura (acquiring by Hytera in 2017)
      • Selex ES
      • Thales

3.0 P25 and TETRA

  • 3.1 General
  • 3.2 TDMA: Advantages and Issues
  • 3.3 Characteristics
  • 3.4 Modifications
  • 3.5 TETRA in North America
    • 3.5.1 FCC Position
    • 3.5.2 TETRA Trials and Deployments in U.S.

4.0 Next Generation PSC

  • 4.1 Mutual Benefits
  • 4.2 Issues
  • 4.3 Help

5.0 LTE Details: PSC

  • 5.1 De-facto Standard
  • 5.2 Broadband Wireless Communications Stages
    • 5.2.1 LTE Standardization-Industry Collaboration
      • 5.2.1.1 Industry Initiative
      • 5.2.1.2 LTE Timetable
      • 5.2.1.3 Initial Releases
  • 5.3 Key Features of LTE
    • 5.3.1 Comparison
  • 5.4 Details
    • 5.4.1 Evolved UMTS Radio Access Network (EUTRAN) - eNB
    • 5.4.2 UE Categories
    • 5.4.3. Evolved Packet Core (EPC)
    • 5.4.4 LTE Layers
  • 5.5 LTE Advanced
  • 5.6 Self-organized Network (SON)
  • 5.7 Market: LTE
    • 5.7.1 General
    • 5.7.2 Market Drivers
    • 5.7.3 Demand: Wireless Broadband
    • 5.7.4 LTE Market Projections
  • 5.8 3GPP and PSC LTE
    • 5.8.1 Releases and PSC
      • 5.8.1.1 Voice
        • 5.8.1.1.1 Opinions
      • 5.8.1.2 Efforts: R11-R13-PSC
        • 5.8.1.2.1 Main Areas
          • 5.8.1.2.1.1 Proximity Services
          • 5.8.1.2.1.2 Group Communications Service
            • 5.8.1.2.1.2.1 MCPTT
          • 5.8.1.2.1.3 Process
            • 5.8.1.2.1.3.1 Release 14 and 15
    • 5.8.2 LTE PSC - Market
  • 5.9 Summary of LTE Benefits
  • 5.10 Industry
    • Aricent
    • Cisco
    • CommAgility
    • Ericsson (PSC)
    • Fujitsu
    • General Dynamics (PSC)
    • Harris (PSC)
    • Huawei
    • Lime Microsystems
    • Motorola Solutions (PSC)
    • Nokia
    • Qualcomm
    • Samsung (PSC)
    • Sequans
    • TI
    • u-blox
    • ZTE
  • 5.11 Summary - LTE Benefits for PSC

6.0 FirstNet: Structure and Features

  • 6.1 General
  • 6.2 Beginning - Plan
    • 6.2.1 Spectrum Auctions
      • 6.2.1.1 Band 14
    • 6.2.2 Governing - Opt-in Decisions
      • 6.2.2.1 Road Map: 2017-2019
  • 6.3 Differences - PSG Communications
  • 6.4 Design: RFIs and RFPs Process
    • 6.4.1 Selection - Participants
  • 6.5 FirstNet - Structural Details
    • 6.5.1 Connectivity
      • 6.5.1.1 Applications
    • 6.5.2 Standards Compliance
      • 6.5.2.1 Layers
        • 6.5.2.1.1 Core Network
        • 6.5.2.1.2 Transport Backhaul
        • 6.5.2.1.3 Radio Access Network (RAN)
        • 6.5.2.1.4 Public Safety Devices
  • 6.6 FirstNet and LTE Current Limitations: 3GPP Releases
    • 6.6.1 LTE - LMR
    • 6.6.2 FirstNet- Adopting Commercial Technology
    • 6.6.3 Challenges and Coexistence
  • 6.7 Industry Preparedness
    • Assured Wireless
    • CalAmp
    • Cradlepoint
    • Elektrobit
    • Elbit
    • General Dynamic
    • Harris
    • In Motion Technology -Sierra Wireless
    • Motorola Solutions
    • Nokia
    • Oceus
    • Parallel Wireless
    • Sonim
    • Star Solutions
  • 6.8 Pilot Projects
  • 6.9 AT&T Core - Completeon
  • 6.10 Verizon Plan

7.0 TETRA - LTE

  • 7.1 Possibility - Union
  • 7.2 ETSI - TCCA
  • 7.3 England - ESMCP
  • 7.4 Other Countries

8.0 Conclusions

Appendix I: 3GPP Releases

Appendix II: References

Appendix III: LTE-P25-TETRA - related Patents Survey (2016-2018)

Table of Figures:

  • Figure 1: APCO Project 25 Interface Committee: Process
  • Figure 2: Generic-P25 System Structure
  • Figure 3: P25 System - Major Interfaces
  • Figure 4: ISSI-P25 System-to-System
  • Figure 5: ISSI-Roaming
  • Figure 6: 700 MHz Band Plan for Public Safety Services
  • Figure 7: Example-Network Scenario
  • Figure 8: Phase II Modulation
  • Figure 9: Interfaces Family
  • Figure 10: CAI Details
  • Figure 11: Capacity
  • Figure 12: Vocoders
  • Figure 13: Spectrum Utilization - FM - Phase II
  • Figure 14: Differences: Phase I and Phase II
  • Figure 15: P25 Geography
  • Figure 16: Estimate: P25 Equipment Global Sales ($B)
  • Figure 17: P25 Market Applications Segments
  • Figure 18: TETRA: Spectrum Allocation
  • Figure 19: TETRA Release I - Functionalities
  • Figure 20: TETRA Interworking Illustration
  • Figure 21: TETRA Interoperability Interfaces
  • Figure 22: Network Scenarios
  • Figure 23: TETRA Release I Interfaces
  • Figure 24: TETRA RII Data Services Developments
  • Figure 25: Two-track Approach
  • Figure 26: TAPS
  • Figure 27: TEDS RF Channel Characteristics
  • Figure 28: Spectral Efficiency
  • Figure 29: Rates and Range
  • Figure 30: Illustration - TETRA TEDS Characteristics
  • Figure 31: TETRA Market Geography (2017)
  • Figure 32: TETRA Segmentation by Industries (2017)
  • Figure 33: Estimate: TETRA Equipment Global Sales ($B)
  • Figure 34: PSC Applications Scenarios
  • Figure 35: Evolution Path
  • Figure 36: Towards Wireless Mobile Broadband
  • Figure 37: Details - Releases Time Schedule and LTE PSC
  • Figure 38: LTE - IP
  • Figure 39: Major LTE Advantages
  • Figure 40: LTE - Reference Architecture
  • Figure 41: LTE Layers
  • Figure 42: Estimate: Global Broadband Mobile Subscribers Base (Bil.)
  • Figure 43: Estimate: LTE-Subscribers' Base-Global (Bil)
  • Figure 44: LTE Equipment Global Sales ($B)
  • Figure 45: Estimate: LTE PSC Subscribers Base - Global (Mil.)
  • Figure 46: Estimate: Installed Base - PSC LTE eNodeB - Global (000)
  • Figure 47: Estimate: Global LTE PSC Market ($B)
  • Figure 48: FirstNet Frequency Plan Details
  • Figure 49: Illustration-FirstNet Connections
  • Figure 50: FirstNet Layers
  • Figure 51: Core Network
  • Figure 52: FirstNet Devices
  • Figure 53: LMR-LTE Capacities - Illustration

Tables:

  • Table 1: Approved P25 Standards (samples)
  • Table 2:P25 Phase I Advantages and Issues
  • Table 3: CAI Major Characteristics
  • Table 4: P25 Services
  • Table 5: Phase II Documents
  • Table 6: Components
  • Table 7: TETRA Established
  • Table 8: TETRA Release I-Major Characteristics
  • Table 9: TETRA Needs
  • Table 10: Applications (Release II)
  • Table 11: Evolution of TETRA Applications
  • Table 12: Terminal Cost
  • Table 13:3GPP Releases
  • Table 14: Initial LTE Characteristics
  • Table 15: Users Equipment Categories (Initial)
  • Table 16: UE Categories - Extended
  • Table 17: Release 12: PSC-related Items
  • Table 18: LTE Frequencies - Band 14
  • Table 19: FirstNet Broadband Applications - Examples
Back to Top