株式会社グローバルインフォメーション
TEL: 044-952-0102
市場調査レポート

高速通信におけるMIMOの役割:技術・市場・用途

MIMO Role in High-speed Communications - Technologies, Markets and Applications

発行 Practel, Inc. 商品コード 572265
出版日 ページ情報 英文 126 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=113.38円で換算しております。
Back to Top
高速通信におけるMIMOの役割:技術・市場・用途 MIMO Role in High-speed Communications - Technologies, Markets and Applications
出版日: 2017年11月02日 ページ情報: 英文 126 Pages
概要

当レポートでは、MIMO (Multiple Input Multiple Output) 型通信システムとその技術、および市場特徴について分析しており、MIMOのメリットおよび各規格における仕様、および主要企業のプロファイルと製品などについてまとめています。

第1章 イントロダクション

第2章 MIMO:コンセプト、機能、および種類

  • 歴史
  • コンセプト:無線通信におけるMIMO
  • MIMOの種類:実例
    • CoMP MIMO
    • Massive MIMO
    • MU-MIMO
    • MIMO-OFDM
    • Mobile Networked MIMO
    • MIMO - 通信メディアの種類別
    • サマリー
  • MIMOのメリット

第3章 MIMOの役割:無線通信

  • LTE展開におけるMIMOの役割
    • Releases - 3GPP
    • LTE のスケジュール
    • ブロードバンドモバイル通信 - 段階
    • LTE標準化 - 産業コラボレーション
    • 産業イニシアチブ
    • 知的財産
    • LTEの主な特徴
    • 詳細
    • LTE Advanced
    • SON
    • 音声サポート
    • 市場
    • サマリー:主なLTEのメリット
    • 産業
    • LTE MIMOの仕様
    • 5G NRおよびMIMO
  • 802.11ax および MIMO
    • 背景
    • 焦点
    • 主な特徴
    • 主な用途
    • 物理レイヤー
    • MAC
    • 802.11ax 動作モード
    • 産業
    • MIMO および 802.11ac 規格
  • 802.11ah および MIMO の役割
    • 802.11ah (Wi-Fi HaLow)
    • 要件
    • 目標・スケジュール
    • 特徴
    • 利用例
    • PHY
    • MACレイヤー
    • サマリー
    • 産業
    • 802.11ay および MIMO 技術
  • 802.11ay および MIMO 技術
    • スケジュール
    • 範囲
    • ニーズ
    • 利用例
    • 期待される特徴
    • MIMO:予備的見解

第4章 ワイヤレス通信におけるMIMO

  • HomePNA および ITU MIMO型技術
    • HomeGrid Forum
    • ITU G.hn
    • 産業
  • HomePlugAV2-mimo
    • 概要
    • 主な改善点
    • 仕様詳細
    • 産業

第5章 結論

目次

This report researches advanced technologies and markets for wireless and wired communications systems that are supported by MIMO - Multiple Input/Multiple Output structures - to enhance their performance. It revises and updates earlier issues of the report as well as adds the analysis of latest technologies.

Users' demand for more efficient networking brought to life many technological innovations. One of them is MIMO, which became very popular in wireless systems - almost all recent and future 3GPP standards use (or will be using) variations of such a technique. MIMO also can be used in wireline systems.

This report is based on the Practel analysis of MIMO-based communications systems, their technologies and markets specifics. Particular, the following industry standards that utilize MIMO have been considered:

  • 3GPP LTE
  • IEEE802.11ax
  • IEEE802.11ay
  • IEEE 802.11ac
  • IEEE 802.11ah
  • HomePlug AV2
  • ITU G.hn.

The goal of this report is to characterize MIMO advantages and specifics for each standard. It also addresses market characteristics of discussed technologies. Report concentrates on profiling the industry players and their products.

MIMO characteristics, structures and types are also addressed and compared.

The report is written for a wide audience of managers and technical staff that involved in the design and implementation of advanced communications systems.

Table of Contents

1.0 Introduction

  • 1.1 General
  • 1.2 Goal
  • 1.3 Structure
  • 1.4 Research Methodology
  • 1.5 Target Audience

2.0 MIMO - Concept, Functions and Types

  • 2.1 History
  • 2.2 Concept: MIMO in Wireless Communications
  • 2.3 Types of MIMO: Examples
    • 2.3.1 CoMP MIMO
    • 2.3.2 Massive MIMO
    • 2.3.3 MU-MIMO
    • 2.3.4 MIMO-OFDM
    • 2.3.5 Mobile Networked MIMO
    • 2.3.6 MIMO - by Type of Communications Media
    • 2.3.7 Summary
  • 2.4 MIMO Benefits (Wireless Systems)

3.0 MIMO Role - Wireless Systems

  • 3.1 MIMO Role in LTE Development
    • 3.1.1 Releases - 3GPP
    • 3.1.2 LTE Timetable
    • 3.1.3 Broadband Mobile Communications-Phases
    • 3.1.4 LTE Standardization-Industry Collaboration
    • 3.1.5 Industry Initiative
    • 3.1.6 Intellectual Property
    • 3.1.7 Key Features of LTE
    • 3.1.8 Details
      • 3.1.8.1 Evolved UMTS Radio Access Network (EUTRAN)
      • 3.1.8.2 UE Categories
      • 3.1.8.3. Evolved Packet Core (EPC)
    • 3.1.9 LTE Advanced
    • 3.1.10 SON
    • 3.1.11 Voice Support
      • 3.1.11.1 VoLTE
    • 3.1.12 Market
      • 3.1.12.1 Drivers
      • 3.1.12.2 Demand: Wireless Broadband
      • 3.1.12.3 LTE Market Projections
    • 3.1.13 Summary: Major LTE Benefits
    • 3.1.14 Industry
      • Altair Semiconductor
      • Aricent
      • AceAxis
      • Cisco
      • CommAgility
      • Ericsson
      • Fujitsu
      • Huawei
      • Lime Microsystems
      • Motorola Solutions
      • Nokia
      • NXP (Qualcomm is in a process of acquiring NXP)
      • Qualcomm
      • Samsung
      • Sequans
      • Signalion
      • TI
      • U-blox
      • ZTE
    • 3.1.15 Specifics LTE MIMO
      • 3.1.15.1 Techniques
      • 3.1.15.2 Major Applications
      • 3.1.15.3 Modes
      • 3.1.15.4 MIMO: LTE Release 8
      • 3.1.15.5 MIMO: LTE Release 9
      • 3.1.15.6 MIMO: LTE Advanced
      • 3.1.15.7 LTE/LTE-A - MIMO Benefits
      • 3.1.15.8 Market Projections
    • 3.1.16 5G NR and MIMO
  • 3.2 802.11ax and MIMO
    • 3.2.1 Background
    • 3.2.2 Focal Points
    • 3.2.3 Major Features
    • 3.2.4 Major Applications
    • 3.2.5 Physical Layer
      • 3.2.5.1 Multi-User Operation
      • 3.2.5.2 Role of MU-MIMO
      • 3.2.5.3 Multi-User OFDMA
    • 3.2.6 MAC
      • 3.2.6.1 Spatial Reuse with Color Codes
      • 3.2.6.2 Power-saving with Target Wake Time
      • 3.2.6.3 Density
    • 3.2.7 802.11ax Operating Modes
    • 3.2.8 Industry
      • Asus
      • Broadcom
      • Huawei
      • Quantenna
      • Qualcomm
      • 3.3 MIMO Role in 802.11ac Development
      • 3.3.1 General - Improving 802.11n Characteristics
      • 3.3.2 Approval
      • 3.3.3 Major Features: Summary
      • 3.3.4 Major Benefits
      • 3.3.5 Usage Models
      • 3.3.6 Waves
      • 3.3.7 Market Projections
      • 3.3.8 Industry
      • Aruba - HP
      • Broadcom
      • Buffalo
      • Cisco
      • D-Link
      • Fortinet
      • Linksys
      • Marvell
      • Netgear
      • Qualcomm
      • Quantenna
      • Redpine Signals
    • 3.3.9 MIMO and 802.11ac Standard
      • 3.3.9.1 Comparison
      • 3.3.9.2 Market Projections
  • 3.4 802.11ah and MIMO Role
    • 3.4.1 802.11ah (Wi-Fi HaLow)
    • 3.4.2 Requirements
    • 3.4.3 Goal and Schedule
    • 3.4.4 Attributes
    • 3.4.5 Use Cases
    • 3.4.6 PHY
      • 3.4.6.1 Bandwidth
      • 3.4.6.2 Channelization
      • 3.4.6.3 Transmission Modes and MIMO
      • 3.4.6.4 Relay Mode
    • 3.4.7 MAC Layer
    • 3.4.8 Summary
    • 3.4.9 Industry
      • Aviacomm/Newracom
      • Orca
      • Aegis-IP
  • 3.5 802.11ay and MIMO Technology
    • 3.5.1 Timetable
    • 3.5.2 Scope
    • 3.5.3 Need
    • 3.5.4 Usage Cases (Examples)
    • 3.5.5 Expected Characteristics
    • 3.5.6 MIMO - Preliminary View

4.0 MIMO in Wireline Communications

  • 4.1 HomePNA and ITU MIMO-based Technologies
    • 4.1.1 HomeGrid Forum
      • 4.1.1.1. Specifications
        • 4.1.1.1.1 General
        • 4.1.1.1.2 HomePNA Specification 3.1: Major Features
        • 4.1.1.1.3 Fast EoC HomePNA
      • 4.1.1.2 Major Benefits
    • 4.1.2 ITU G.hn
      • 4.1.2.1 General
      • 4.1.2.2 G.hn Details
        • 4.1.2.2.1 Differences
        • 4.1.2.2.2 Common Features
      • 4.1.2.3 Acceptance
      • 4.1.2.4 HomePNA and G.hn Documents
      • 4.1.2.5 G.hn-mimo - G.9963
        • 4.1.2.5.1 Drivers
        • 4.1.2.5.2 G.9963 Details
          • 4.1.2.5.2.1 General
          • 4.1.2.5.2.2 Wireline Specifics - G.hn-mimo
          • 4.1.2.5.2.3 Scope
          • 4.1.2.5.2.4 Performance
    • 4.1.3 Industry
      • Comtrend
      • Marvell
      • Sigma Designs
      • ST&T
  • 4.2 HomePlugAV2-mimo
    • 4.2.1 General
      • 4.2.1.1 Certification
    • 4.2.2 Major Improvements
    • 4.2.3 Specification Details
      • 4.2.3.1 MIMO Role
    • 4.2.4 Industry
      • Broadcom
      • Extollo
      • Gigafast Ethernet
      • Intersil
      • Lea Networks
      • Sineoji
      • Trendnet
      • TP-Link
      • Qualcomm Atheros
      • Zyxel

5.0 Conclusions

  • Figure 1: 2x2 MIMO
  • Figure 2: Major Antenna Configurations
  • Figure 3: MIMO Concept (2x2)
  • Figure 4: Illustration - Beamforming
  • Figure 5: MU-MIMO - Downlink
  • Figure 6: Differences
  • Figure 7: Evolution Path
  • Figure 8: Towards Wireless Mobile Broadband
  • Figure 9: LTE - IP
  • Figure 10: EPC - Reference Architecture
  • Figure 11: Projections: LTE Global Subscribers Base (Bil.)
  • Figure 12: TAM: LTE Global Equipment Sale ($B)
  • Figure 13: Spectral Efficiency DL
  • Figure 14: Projections: Global - LTE MIMO Sales ($B)
  • Figure 15: Channel Assignment
  • Figure 16: Estimate - 802.11ac Consumers AP Shipping-Global (Mil. Units)
  • Figure 17: Estimate - 802.11ac Consumers AP Shipping-Global ($B)
  • Figure 18: Estimate: Global Shipping - 802.11ac MU-MIMO Consumers AP ($B)
  • Figure 19: Estimate: Global - 802.11ac Consumers AP MIMO Sales ($B)
  • Figure 20: 802.11ah Use Cases
  • Figure 21: Frequency Spectrum (sub-1 GHz)
  • Figure 22: 802.11ah - Channelization Plan in U.S.
  • Figure 23: Transmission Characteristics - 802.11ah
  • Figure 24: 802.11ah Features Summary
  • Figure 25: PLC-MIMO (2x2)
  • Figure 26: MIMO -Details
  • Figure 27: Maximum Theoretical PHY Rates (home media) based on published figures
  • Figure 28: HomePlug AV2 Features
  • Figure 29: MIMO PLC Channels
  • Table 1: MIMO Variations
  • Table 2: MIMO Benefits
  • Table 3: 3GPP Releases
  • Table 4: Schedule
  • Table 5: Initial LTE Characteristics: Illustration
  • Table 6: LTE Frequency Bands
  • Table 7: Users Equipment Categories (Rel. 8)
  • Table 8: UE Categories (Rel. 10)
  • Table 9: Extended - Rel.13
  • Table 10: Transmission Modes
  • Table 11: LTE Transmission Modes - MIMO
  • Table 12: Additional Details
  • Table 13: Comparison - Wi-Fi Characteristics
  • Table 14: PHY: 802.11ax vs 802.11ac
  • Table 15: Functionalities - 802.11ac
  • Table 16: Specifics
  • Table 17: Rates
  • Table 18: Usage Models - 802.11ac
  • Table 19: 802.11ac Waves
  • Table 20: 802.11n vs. 802.11ac
  • Table 21: ITU and HomePNA Standards
  • Table 22: Comparative Characteristics
  • Table 23: Frequency-Rate Characteristics
Back to Top