株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

5G通信時代 - 技術・用途・市場評価

5G Communications Era: Current and Planned Developments - Technologies, Applications and Markets Assessment

発行 PracTel, Inc. 商品コード 524569
出版日 ページ情報 英文 248 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=112.65円で換算しております。
Back to Top
5G通信時代 - 技術・用途・市場評価 5G Communications Era: Current and Planned Developments - Technologies, Applications and Markets Assessment
出版日: 2017年07月08日 ページ情報: 英文 248 Pages
概要

当レポートでは、5Gネットワーキングの一般的な要件および現在の5G標準化活動について調査しています。

第1章 イントロダクション

第2章 取り組み

  • 組織
  • 5Gのタイムテーブル (3GPP-ITU)
  • 活動調査

第3章 現在の発展:5G技術

  • 特徴
  • 有望な方向性
  • 課題
  • 利用例

第4章 ソフトウェア定義・コグニティブ無線:5G

  • スペクトル活用
  • 共通目標
  • ニーズ
  • 役割
  • 目的
  • 定義 (WIF, FCC, ITU)
  • 多用途性
  • 組織・規制
  • 意思決定
  • CR/SDR機能
  • 要素
  • 用途
  • 産業
  • 5GのCR/SDRニーズ

第5章 MIMOおよび5G

  • 歴史
  • コンセプト:ワイヤレス通信におけるMIMO
  • MIMOの種類
  • 5G:MIMO仕様
  • MIMOのメリット
  • 産業

第6章 ミリ波Wi-Fi

  • IEEE 802.11ad
  • 概要
  • 60GHz バンドおよびスペクトル仕様
  • アンテナ
  • 60GHz の放射制限
  • 複合効果
  • チップ技術における進歩
  • サマリー
  • 展望:60GHz Wi-Fi
  • 産業
  • 市場検討事項
  • Wi-Fi: 802.11ay

第7章 可視光通信:5G技術

  • 概要
  • VLC規格の開発
  • VLCチャネル仕様
  • 企業・組織
  • 5Gの見解
  • 主なアプリケーション

第8章 5Gおよびスモールセル展開

  • 論理
  • 命名法
  • 背景
  • アプリケーション
  • メリット・課題
  • スモールセル市場
  • 標準化
  • スモールセル産業

第9章 結論

目次

BRIEF

The 5G wireless communication system will be a converged system with multiple radio access technologies integrated together. It will be able to support a wide range of applications and services to comprehensively satisfy the requirements of the information society by the year 2020 and beyond. From the technology perspective, 5G will be the continuous enhancement and evolution of the present radio access technologies, and also the development of novel radio access technologies to meet the increasing demand of future. 5G can be characterized as data, connectivity and user experience.

There are two main views on 5G that exist today, which are frequently mixed together to form the basis of the 5G definition:

  • View 1 - The hyper-connected vision: In this view, 5G is seen as a blend of existing technologies (2G, 3G, 4G, Wi-Fi and others) that can deliver greater coverage and availability, higher network density in terms of cells and devices, and the ability to provide the connectivity that enables machine-to-machine (M2M) services and the Internet of Things (IoT).
  • View 2 - Next-generation radio access technology: This perspective outlines 5G in ‘generational' terms, setting specific targets that new radio interfaces must meet in terms of data rates (faster than 1Gbps downlink) and latency (less than 1ms delay).

The first view is connected with a gradual transition of 3G/4G (and other) technologies to the 5G era with appropriate enhancements and extensions. Some of such technologies are the subject of this report analysis. Particular, the following technologies, their markets, industries and applications are addressed in connection with their transition to 5G (they are being bundled under the title of 5G despite the fact that they are already being brought to market by vendors and deployed by operators):

  • CR/SDR - Cognitive Radio/Software Defined Radio
  • Small Cells
  • mmWave Radio
  • MIMO
  • Visible Light Communications.

The report also addresses general requirements to 5G networking and surveys current 5G standardization activities.

The report intends to a wide audience of technical and managerial staff involved in the development of advanced wireless communications.

Table of Contents

1.0. Introduction

  • 1.1. General
  • 1.2. Planning Wireless Technologies: Generations
  • 1.3. Goal
  • 1.4. Structure
  • 1.5. Research Methodology
  • 1.6. Target Audience

2.0. Efforts

  • 2.1. Organizations
  • 2.2. 5G Timetable (3GPP-ITU)
    • 2.2.1. RAN study
    • 2.2.2. Leaders: 5G Activity
  • 2.3. Activity Survey
    • 2.3.1. EU
      • 2.3.1.1. METIS 2020
      • 2.3.1.2. 5G PPP
    • 2.3.2. Next Generation Mobile Networks (NGMN) Ltd
      • 2.3.2.1. 5G White Paper
    • 2.3.3. 5G Americas
    • 2.3.4. GSMA
    • 2.3.5. ITU

3.0. Current Developments: 5G Technologies

  • 3.1. Characteristics
  • 3.2. Promising Directions
    • 3.2.1. Requirements
    • 3.2.2. Common Views
      • 3.2.2.1. Spectrum
    • 3.2.3. Future - Starts Today
  • 3.3. Issues
  • 3.4. Use Cases
    • 3.4.1. General - Characteristics
    • 3.4.2. Mobile Broadband
    • 3.4.3. Automotive
    • 3.4.4. Smart Society

4.0. Software Defined and Cognitive Radios -5G

  • 4.1. Spectrum Utilization
  • 4.2. Common Goal
  • 4.3. Needs
  • 4.4. Role
  • 4.5. Purpose
  • 4.6. Definition (WIF, FCC, ITU)
    • 4.6.1. CR Types
  • 4.7. Versatility
  • 4.8. Organizations and Regulations
    • 4.8.1. Wireless Innovation Forum Position
    • 4.8.2. FCC
      • 4.8.2.1. Equipment Type
      • 4.8.2.2
      • 4.8.2.3. Clarifications
      • 4.8.2.4. Application Guide
    • 4.8.3. Object Management Group - OMG
    • 4.8.4. ETSI
  • 4.9. Decisions
  • 4.10. CR/SDR Features
  • 4.11. Elements
  • 4.12. Applications
    • 4.12.1. Commercial
    • 4.12.2. SDR in Military
      • 4.12.2.1. SCA
    • 4.13. STRS
    • 4.14. CR/SDR: Applications Benefits
    • 4.15. Impact
    • 4.16. Differences
    • 4.17. Market
      • 4.17.1. Landscape
    • 4.17.2. Components
    • 4.17.3. Trends
    • 4.17.4. Cost
    • 4.17.5. Different Perspective
    • 4.17.6. Drivers
    • 4.17.7. Market Forecast
      • 4.17.7.1. Model Assumptions
      • 4.17.7.2. Estimate
  • 4.18. Industry
    • Aeronix (SDR Components)
    • AirNet Communications (SDR Base Stations)
    • Analog Devices (Chipsets)
    • Cambridge Consultants (PHY, Base Station)
    • Carlson Wireless (Platform)
    • Cisco (802.11a)
    • CRT (CR SW)
    • DataSoft (SDR Design, SW)
    • Etherstack (Software)
    • Green Hills (Software)
    • Harris (SDR)
    • Huawei (Platform)
    • Mercury Systems (Toolsets)
    • NI (mmWave CR/SDR)
    • Nokia (Base Station)
    • Nutaq
    • PrismTech (SDR Development Environment)
    • Rockwell Collins (Radios)
    • SELEX ES (Radio)
    • Spectrum Signal Processing (Platforms)
    • Thales (Radio)
    • TI (Chips)
    • Wind River (Software)
    • xG Technology (Radio)
    • ZTE (Platforms)
  • 4.19. 5G Needs CR/SDR

5.0. MIMO and 5G

  • 5.1. History
  • 5.2. Concept: MIMO in Wireless Communications
    • 5.2.1. Major Techniques
  • 5.3. Types of MIMO
  • 5.4. 5G - MIMO Specifics
    • 5.4.1. MMIMO Definition
    • 5.4.2. MMIMO Properties
  • 5.5. MIMO Benefits
  • 5.6. Industry
    • Blue Danube
    • Beecube
    • Nutaq
    • ZTE

6.0. mmWAVE Wi-Fi

  • 6.1. IEEE 802.11ad
    • 6.1.1. 5G and 802.11ad
      • 6.1.1.1. 5G Spectrum Extension
      • 6.1.1.2. 5G - Densification
    • 6.1.2. Goal
  • 6.2. General
  • 6.3. 60. GHz Band Spectrum Specifics
    • 6.3.1. Frequencies Allocation
      • 6.3.1.1. FCC 60 GHz Band Extension
    • 6.3.2. Oxygen Absorption
  • 6.4. Antenna
  • 6.5. Radiation Limiting at 60 GHz
  • 6.6. Combined Effect
  • 6.7. Progress in the Chip Technology
    • 6.7.1. Challenges and Efforts
    • 6.7.2. Modulation
    • 6.7.3. Specifics
      • 6.7.3.1. Indoor Behavior
  • 6.8. Summary
  • 6.9. Prospectus: 60KKKKK GHz Wi-Fi
    • 6.9.1. Benefits and Issues
    • 6.9.2. WiGig Alliance
      • 6.9.2.1. Use Cases
      • 6.9.2.2. Union
    • 6.9.3. IEEE 802.11ad - 60KKKKK GHz Wi-Fi
      • 6.9.3.1. Status
      • 6.9.3.2. Coexistence
      • 6.9.3.3. Scope
      • 6.9.3.4. Channelization
      • 6.9.3.5. PHY
      • 6.9.3.6. MAC
      • 6.9.3.7. Specification Features
      • 6.9.3.8. Summary
  • 6.10. Industry
    • Blu Wireless
    • Intel
    • Lattice
    • Nitero
    • Peraso
    • Qualcomm
    • Samsung
    • Tensorcom
    • TP-Link
  • 6.11. Market Considerations
    • 6.11.1. Market Drivers
    • 6.11.2. Usage Models
    • 6.11.3. Preliminary Market Estimate
  • 6.12. Wi-Fi: 802.11ay

7.0. Visible Light Communications - 5G Technology

  • 7.1. General
    • 7.1.1. Drivers
    • 7.1.2. Industry Activity
      • 7.1.2.1. UC-Light Center
      • 7.1.2.2. Europe
  • 7.2. VLC Standards Development
    • 7.2.1. The IEEE 802.15.7KKKKK Standard
      • 7.2.1.1. Considerations
      • 7.2.1.2. Project
        • 7.2.1.2.1. Coexistence
        • 7.2.1.2.2. Essence
        • 7.2.1.2.3. Base
        • 7.2.1.2.4. Use Cases
        • 7.2.1.2.5. Physical Layer
          • 7.2.1.2.5.1. General
          • 7.2.1.2.5.2. Responsibilities
          • 7.2.1.2.5.3. Types
          • 7.2.1.2.5.4. Error Protection
          • 7.2.1.2.5.5. Rates
          • 7.2.1.2.5.6. Frequency Plan
          • 7.2.1.2.5.7. PHY Services
          • 7.2.1.2.5.8. Regulations
        • 7.2.1.2.6. MAC Layer
          • 7.2.1.2.6.1. Responsibilities
          • 7.2.1.2.6.2. Functionalities
          • 7.2.1.2.6.3. Channel Access
        • 7.2.1.2.7. Security
    • 7.2.2. Jeita
      • 7.2.2.1. JEITA CP-1221
      • 7.2.2.2. JEITA CP-1222
      • 7.2.2.3. JEITA CP-1223KKKKK (2013)
    • 7.2.3. Visible Light Communications Consortium (VLCC)
      • 7.2.3.1. General
      • 7.2.3.2. Membership
    • 7.2.4. Li-Fi Consortium
      • 7.2.4.1. Optical Mobility Technology
      • 7.2.4.2. Li-Fi Network
  • 7.3. VLC Channel Specifics
    • 7.3.1. General
    • 7.3.2. Communications Channel Structure
    • 7.3.3. Transmitter
    • 7.3.4. Receiver
      • 7.3.4.1. Image Sensors
      • 7.3.4.2. LED as Receiver
    • 7.3.5. Major Characteristics
      • 7.3.5.1. General
      • 7.3.5.2. Modulation
      • 7.3.5.3. VLC Channel: Characteristics Summary
      • 7.3.5.4. Emerging Areas
      • 7.3.5.5. Limiting Factors
    • 7.3.6. Major Challenges
  • 7.4. Companies and Organizations
    • Axrtek
    • Casio
    • Firefly
    • Fraunhofer IPMS
    • LVX
    • Lightbee
    • Nakagawa Laboratories
    • NEC
    • Oledcomm
    • Outstanding Technology
    • PureVLC-PureLi-Fi
    • Qualcomm
    • SmartSignals
    • Supreme Architecture
    • TCL/Sunpartner
    • Tamura
    • 7.5. Market
  • 7.6. 5G View
    • 7.6.1. Attocell
    • 7.6.2. Cell Structures
  • 7.7. Major Applications
    • 7.7.1. ITS
      • 7.7.1.1. Abilities
      • 7.7.1.2. Major Areas
    • 7.7.2. Optical Wireless LAN
    • 7.7.3. Healthcare
    • 7.7.4. Localization
    • 7.7.5. City Wide Wireless Network
    • 7.7.6. Summary

8.0. 5G and Small Cells Development

  • 8.1. Rational
  • 8.2. Nomenclature
    • 8.2.1. Group
  • 8.3. Background
  • 8.4. Applications
    • 8.4.1. Indoor Use Cases
    • 8.4.2. Outdoor Use Cases
    • 8.4.3. Public Safety Communications
    • 8.4.4. Summary
  • 8.5. Benefits and Issues
  • 8.6. Small Cell Market
    • 8.6.1. Market Geography
    • 8.6.2. Estimate
  • 8.7. Standardization
    • 8.7.1. Organizations
    • 8.7.2. Interfaces - 3GPP
    • 8.7.3. First Standard
    • 8.7.4. 3GPP Rel.12KKKKK and SCs
  • 8.8. Small Cell Industry
    • Airspan
    • AirHop Communications
    • Alpha Networks
    • Argela
    • Broadcom (acquired by Avago in 2015)
    • BTI Wireless
    • Cavium
    • Cisco
    • CommScope
    • Contela
    • Ericsson
    • Fujitsu
    • Huawei
    • ip.access
    • Intel
    • Gilat
    • Juni
    • NEC
    • Nokia
    • Qualcomm
    • Radisys
    • Samsung
    • Spider Cloud
    • Tektelic
    • TI
    • Xilinx
    • ZTE

9.0. Conclusions

List of Figures:

  • Figure 1: Mobile Technologies Generations
  • Figure 2: Time - Mobile Generations/Rate
  • Figure 3: OSI Layers - 4G and 5G
  • Figure 4: Global Mobile Data Traffic
  • Figure 5: ITU-R Schedule for IMT-2020
  • Figure 6: 3GPP - Tentative Timeline - 5G Standardization
  • Figure 7: Current View: Transition
  • Figure 8: 5G Spectrum
  • Figure 9: 5G Technologies Directions
  • Figure 11: 5G Use Cases-General Illustration
  • Figure 12: Use Cases - Rate of Transmission and Latency
  • Figure 13: SDR and OSI Reference Model
  • Figure 14: SDR - Structure
  • Figure 15: Estimate: Global Sales - SDR-based Equipment ($B)
  • Figure 16: SDR Market Geography (2017)
  • Figure 17: Major Antennas Configurations
  • Figure 18: MIMO Concept (2x2)
  • Figure 19: Illustration - Beamforming
  • Figure 20: MU-MIMO - Downlink
  • Figure 21: SU-MIMO and MU-MIMO
  • Figure 22: MMIMO
  • Figure 23: Exploring IMT Spectrum
  • Figure 24: 60 GHz Network Scenarios
  • Figure 25: 60 GHz Frequencies Plan
  • Figure 26: 60 GHz Spectrum Details
  • Figure 27: Signal Attenuation in 60 GHz Band
  • Figure 28: Absorption Details - 60 GHz Signal
  • Figure 29: Bands Features Comparison
  • Figure 30: Wi/Gig Protocols/Planes
  • Figure 31: Use Cases - WiGig Alliance
  • Figure 32: 802.11ad MAC Structure
  • Figure 33: Summary: 802.11ad Properties
  • Figure 34: Estimate: 802.11ad Chipsets Sales - Global (Bil. Units)
  • Figure 35: Estimate: 802.11ad Chipsets Global Sales ($B)
  • Figure 36: VLC - Comparison
  • Figure 37: Illustration-VLC Channel
  • Figure 38: VLC Market Categories
  • Figure 39: Estimate: VLC Market - Global ($B)
  • Figure 40: VLC Market Geography (2017)
  • Figure 41: mmWave Advantages
  • Figure 42: Macro vs Small BS - Shipped (Ratio)
  • Figure 43: BS: Characteristics and Classification
  • Figure 44: BS Parameters
  • Figure 45: Summary: SC Use Cases
  • Figure 46: Estimate: SC Global Shipments (Mil. Units)
  • Figure 47: Estimate: Global SC Shipments ($B)
  • Figure 48: 3GPP Rel. 12 SC Enhancements
  • Figure 49: Scenario 1
  • Figure 50: Scenario 2

List of Tables:

  • Table 1: Major Characteristics - 5G Networks
  • Table 2: 5G Use Case Families
  • Table 3: SDR Tiers
  • Table 4: CR Features
  • Table 5: ETSI Documents
  • Table 6: SDR Market Drivers
  • Table 7: SDR Market Segments (Military vs. Commercial)
  • Table 8: MIMO - 3GPP Releases
  • Table 9: MIMO Benefits
  • Table 10: 60 GHz Radio Standardization
  • Table 11: Antenna Directivity
  • Table 12: 60 GHz Links Characteristics
  • Table 13: 802.11ad Major Features
  • Table 14: 60 GHz Wi-Fi Usage Cases
  • Table 15: Use Cases - 802.15.7
  • Table 16: Devices and Characteristics - 802.15.7
  • Table 17: Frequency Plan - 802.15.7
  • Table 18: VLC Properties
  • Table 19: VLC, IR and RF Communications ITS Applications Comparison
  • Table 20: Locations Technologies-VLC Place
Back to Top