市場調査レポート

ビデオストリーミング:ワイヤレス屋内配信技術と市場

Video Streaming-Wireless Local Distribution Technologies and Markets

発行 Practel, Inc. 商品コード 323347
出版日 ページ情報 英文 144 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
ビデオストリーミング:ワイヤレス屋内配信技術と市場 Video Streaming-Wireless Local Distribution Technologies and Markets
出版日: 2015年01月24日 ページ情報: 英文 144 Pages
概要

ストリーミングメディアの利用は、ここ数年間で急増しています。娯楽目的のほか、組織が、自社の製品やサービスを市場に出し、販売やサポートの媒体として利用したり、社内コミュニケーションやトレーニングに使用しています。

当レポートでは、非圧縮のストリーミングビデオ/オーディオ(AV)ワイヤレス屋内配信市場について調査分析し、伝送技術(WirelessHD、IEEE 802.15.3c、IEEE 802.11ad、ECMA-387、IEEE 802.11n、IEEE 802.11ac、IEEE 802.11ax、WHDI、WIDIなど)について、体系的な情報を提供しています。

第1章 イントロダクション

第2章 基準

第3章 60GHzの技術

  • 種類
  • 仕様
  • 標準化
  • WirelessHD
  • IEE 802.15.3c
  • 製品例
  • 802.11ad
  • ECMA
  • ETSI
  • ITU-R
  • 比較
  • 60GHz WPAN:例
  • 利点と課題:サマリー

第4章 802.11nの発展

  • 802.11nの状況
  • IEEE 802.11nとWi-Fi Alliance
  • 802.11nの技術仕様
  • PHYとMAC
  • 主な標準機能:サマリー
  • 利点と応用
  • 市場
  • NIMOと802.11n
  • WiDi
  • 産業

第5章 802.11acの発展

  • 概要
  • 認証
  • 主な機能:サマリー
  • 主な利点
  • 利用モデル
  • 予測
  • 802.11ac標準におけるNIMO
  • 産業

第6章 IEEE 802.11aa

  • 概要
  • 状況
  • 詳細

第7章 IEEE 802.11ax

第8章 Amimon - WHDI

  • 概要
  • WHDI技術
  • 製品
  • 仕様

第9章 結論

図表

目次

Streaming media usage has grown exponentially over the past few years, both for entertainment purposes and as a vehicle for organizations to market, sell, and support their products and services, as well as for internal communications and training. For many such organizations, streaming video has transitioned from a "nice to have" curiosity to a mission critical technology. Streaming media has become an integral part of the Internet experience for both consumers and enterprise users.

The streaming video content market is growing; some analysts predict that the size of this market can reach more than $3.5B in 2015.

This report addresses markets and technologies for uncompressed streaming video/audio (A/V) wireless local distribution (usually in a single room). Such communications between PCs, smartphones, displays and similar devices require usually gigabits per second transmission rates, lower latency and other characteristics that can be supported by some evolving and existing technologies.

Several developed technologies and their markets are analyzed and compared to present a rich landscape of transmission methods, which can differ in such main properties as the transmission band, speed of transmission and implementation specifics. The report reflects the industry trend towards a wider use of Wi-Fi broadband technologies for the discussed purposes.

Particular, the following transmission technologies have been addressed:

  • WirelessHD: 60 GHz radio technology originally introduced by SiBeam. The standard was developed by the WirelessHD Alliance.
  • IEEE 802.15.3c.
  • IEEE 802.11ad - 60 GHz WLAN.
  • ECMA-387.
  • IEEE 802.11n.
  • IEEE 802.11ac.
  • IEEE 802.11ax.
  • WHDI - based on the Amimon development: 5 GHz technology.
  • WIDI - developed by Intel.

The report provides the in-depth market analysis segmented by technologies and supported by the industry experts. It also collects the surveys of multiple industry players' portfolios.

The major trend emphasized by this report is that the Wi-Fi innovations (particular 802.11ad, 802.11ac and future 802.11ax and other) will lead the addressed in the report market segment. It is envisioned that similar to 802.11 a,b,g,n embedded electronics that can be found in all major CE devices, the next generation of broadband Wi-Fi will allow to add streaming uncompressed A/V to the arsenal of supported wireless signals. More than that, the industry sees great potentials in utilization of tri-band Wi-Fi (2.4 GHz, 5 GHz and 60 GHz) devices. The Wi-Fi is winning due to ubiquity of this technology and a huge existing industry.

The report is developed for a wide audience of technical and marketing specialists that work in related segments of telecom and IT industries.

Table of Contents

1.0. Introduction

  • 1.1. Streaming Video
  • 1.2. Varieties
  • 1.3. Goals
  • 1.4. Research Methodology
  • 1.5. Target Audience

2.0. Criteria

3.0. 60 GHz Technologies

  • 3.1. Types
  • 3.2. Specifics
    • 3.2.1. General
    • 3.2.2. Spectrum
    • 3.2.3. Indoor Behavior
    • 3.2.4. Antenna Focus
    • 3.2.5. Progress in Chip Technology
    • 3.2.6. Challenges and Objectives
    • 3.2.7. Summary
    • 3.2.8. Examples: 60 GHz IC R&D and Vendors
      • Hittite (acquired by Analog Devices)
      • IBM
      • IMEC
      • NEC
  • 3.3. Standardization
    • 3.3.1. Regulations
    • 3.3.2. Applications
  • 3.4. WirelessHD
    • 3.4.1. Specifics
      • 3.4.1.1. Consortium
      • 3.4.1.2. Goals
      • 3.4.1.3. Specifications: General
    • 3.4.2. Details
    • 3.4.3. Completion
      • 3.4.3.1. Architecture
    • 3.4.4. Compliance Verification
    • 3.4.5. Synopsis
  • 3.5. IEEE 802.15.3c
    • 3.5.1. Further Details
  • 3.6. Products Examples
    • Silicon Image
    • SiBeam
  • 3.7. 802.11ad
    • 3.7.1. 60 GHz Wi-Fi - Benefits and Issues
    • 3.7.2. WiGig Alliance
      • 3.7.2.1. Specification (v1.0)
      • 3.7.2.2. WiGig Protocol Adaption Layer Specifications
      • 3.7.2.3. WiGig Bus Extension and WiGig Serial Extension
      • 3.7.2.4. WiGig Display Extension
      • 3.7.2.5. Finalization
      • 3.7.2.6. Union
    • 3.7.3. Standard
      • 3.7.3.1. Status
      • 3.7.3.2. Coexistence
      • 3.7.3.3. Scope
      • 3.7.3.4. Channelization
      • 3.7.3.5. PHY
      • 3.7.3.6. MAC
      • 3.7.3.7. Specifics
      • 3.7.3.8. Summary
    • 3.7.4. Industry
      • Beam Networks
      • Nitero
      • Peraso
      • Tensorcom
      • Wilocity (acquired by Qualcomm in 2014)
    • 3.7.5. Potential Market
      • 3.7.5.1. Market Drivers
      • 3.7.5.2. Usage Models
      • 3.7.5.3. Estimate
  • 3.8. ECMA
    • 3.8.1. ECMA-387
    • 2.6.2. ECMA and WiHD
  • 3.9. ETSI
    • 3.9.1. EN 302 567 V1.2.1 (2012-01)
    • 3.9.2. TR 102 555
  • 3.10. ITU-R
    • 3.10.1. Applications
    • 3.10.2. Modulation and Data Rate
    • 3.10.3. Beam Forming
    • 3.10.4. Spatial Reuse
  • 3.11. Comparison
  • 3.12. 60 GHz WPAN: Example
  • 3.13. Advantages and Challenges: Summary

4.0. 802.11n Development

  • 4.1. 802.11n Status
    • 4.1.1. Environment
    • 4.1.2. Draft v. 1.0
    • 4.1.3. Draft v. 2.0
    • 4.1.4. Further Developments and IEEE Approval
  • 4.2. IEEE 802.11n and Wi-Fi Alliance
  • 4.3. 802.11n Technology Specifics
    • 4.3.1. Major Advances
      • 4.3.1.1. MIMO
      • 4.3.1.2. Spatial Division Multiplexing
      • 4.3.1.3. OFDM
      • 4.3.1.4. Channel Bonding
      • 4.3.1.5. Packet Aggregation
  • 4.4. PHY and MAC
  • 4.5. Major Standard Features: Summary
    • 4.5.1. Specifics
    • 4.5.2. Channel Bandwidth
    • 4.5.3. Backward Compatibility
    • 4.5.4. Adaptation
    • 4.5.5. Security
    • 4.5.6. Enhancements
  • 4.6. Benefits and Applications
    • 4.6.1. Benefits
    • 4.6.2. Applications
  • 4.7. Market
    • 4.7.1. Drivers
    • 4.7.2. Market Forecast
      • 4.7.2.1. Model Assumptions
      • 4.7.2.2. Estimate
  • 4.8. MIMO and 802.11n
    • 4.8.1. MIMO Specifics: 802.11n
    • 4.8.2. High Throughput (HT) Station (STA)
      • 4.8.2.1. Features
    • 4.8.3. Basic Concept
    • 4.8.4. MIMO Contributions
  • 4.9. WiDi
  • 4.10. Industry
    • Aerohive (APs)
    • Aruba (APs)
    • Asus
    • Atheros-Qualcomm (Chipsets, WUSB)
    • Buffalo (Router, AP)
    • Belkin (Routers, Adaptors, WUBS)
    • Broadcom (Chipsets, WUSB)
    • Cisco (AP)
    • Celeno (HD Video Streaming)
    • D-Link (Routers, WUSB)
    • Marvell (Chipsets)
    • Meru (Family of Products)
    • Motorola Solution (Tools, AP)
    • Netgear (Router, AP)
    • OvisLink (Router, WUBS)
    • Redpine Signals (Chipsets)
    • Ruckus (AP, Multimedia)
    • Quantenna (chipsets)
    • TP-Link
    • TrendNet (Routers, AP, WUSB)
    • Xirrus
    • ZyXel (AP, Router, WUSB)

5.0. 802.11ac Development

  • 5.1. General - Improving 802.11n Characteristics
  • 5.2. Approval
  • 5.3. Major Features: Summary
  • 5.4. Major Benefits
  • 5.5. Usage Models
    • 5.5.1. Phases
  • 5.6. Projections
  • 5.7. MIMO in 802.11ac Standard
    • 5.7.1. Comparison
      • 5.7.1.1. MU-MIMO vs. SU-MIMO
      • 5.7.1.2. Beamforming
    • 5.7.2. Estimate
  • 5.8. Industry
    • Aruba
    • Broadcom
    • Buffalo
    • Celeno
    • Cisco
    • D-Link
    • Linksys
    • Marvell
    • Meru
    • Netgear
    • Qualcomm
    • Redpine Signals

6.0. IEEE 802.11aa

  • 6.1. General
  • 6.2. Status
  • 6.3. Details

7.0. IEEE 802.11ax

8.0. Amimon - WHDI

  • 8.1. General
    • 8.1.1. Amimon
    • 8.1.2. Consortium
  • 8.2. WHDI Technology
    • 8.2.1. Coding
    • 8.2.2. OFDM and MIMO
  • 8.3. Products
    • 8.3.1. Chipsets
  • 8.4. Specification

9.0. Conclusions

List of Figures:

  • Figure 1: 60 GHz Transmission Examples
  • Figure 2: 60 GHz Unlicensed Spectrum - Global Allocations
  • Figure 3: WirelessHD System Architecture
  • Figure 4: Channelization
  • Figure 5: 802.11ad MAC
  • Figure 6: PM: Tri-band Wi-Fi Chipsets Sales - Global (Bil. Units)
  • Figure 7: PM: Global Sales Tri-band Wi-Fi Chipsets ($B)
  • Figure 8: TAM: Gb Wi-Fi Global
  • Figure 9: 60 GHz WPAN Example
  • Figure 10: 802.11n MAC
  • Figure 11: Frame - Illustration
  • Figure 12: TAM: Global Sales - Wi-Fi Chipsets ($B)
  • Figure 13: TAM: Global Sales - Wi-Fi Chipsets (Bill. Units)
  • Figure 14: TAM: Global Sales - 802.11n Chipsets ($B)
  • Figure 15: TAM: Global Sales - 802.11n Chipsets (Bil. Units)
  • Figure 16: 802.11n Market Geography
  • Figure 17: Channel Assignment
  • Figure 18: 802.11ac Consumers AP Shipping-Global (Mil. Units)
  • Figure 19: 802.11ac Consumers AP Shipping-Global ($B)
  • Figure 20: Projections: Global MU-MIMO 802.11ac Consumers AP Sales ($B)

List of Tables:

  • Table 1: Losses (dB)
  • Table 2: Antenna Beam Width
  • Table 3: Quality vs. Speed
  • Table 4: Characteristics
  • Table 5: WVAN Characteristics
  • Table 6: PHY Characteristics
  • Table 7: WLAN Usage Models
  • Table 8: 802.11ad Major Features
  • Table 9: Examples: Modulation and Coding Schemes (MCS)
  • Table 10: Summary
  • Table 11: SC Rates
  • Table 12: OFDM Rates
  • Table 13: 60 GHz Wi-Fi Usage Models
  • Table 14: Radio Characteristics
  • Table 15: 60 GHz Technologies
  • Table 16: Comparison
  • Table 17: Draft 1.0
  • Table 18: 802.11n PHY
  • Table 19: Comparison: 802.11 Family Members Transfer Rates
  • Table 20: 802.11n Enhancements
  • Table 21: 802.11n Advantages
  • Table 22MIMO PHY Characteristics
  • Table 23: Major Properties
  • Table 24: Specifics
  • Table 25: Rates
  • Table 26: Usage Models
  • Table 27: Implementation Phases
  • Table 28: 802.11n vs. 802.11ac
Back to Top