市場調査レポート

再構成可能な無線:ホワイトスペースのM2M通信

Reconfigurable Radio - White Spaces M2M Communications

発行 Practel, Inc. 商品コード 311565
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=102.85円で換算しております。
Back to Top
再構成可能な無線:ホワイトスペースのM2M通信 Reconfigurable Radio - White Spaces M2M Communications
出版日: 2014年09月02日 ページ情報: 英文
概要

当レポートでは、再構成可能な無線の特徴を利用した最初の技術のひとつとしてのホワイトスペース通信の開発に焦点を当て、ホワイトスペース通信の特徴、通信のメリットおよび課題を分析しており、各国の規制環境、標準化の取り組み、M2M通信への適用などに関する情報を提供しています。

第1章 イントロダクション

第2章 ソフトウェア定義・コグニティブ無線

  • 概要
  • 目的
  • 定義(WIF、FCC、ITU)
  • SDR:規制
  • 標準化団体の取り組み
  • 検討事項
  • 特性
  • SDR実行
  • アプリケーション
  • SDR/CR:メリット
  • 影響
  • 市場
  • 産業

第3章 ホワイトスペース通信:規制

  • 定義
  • 地域
  • FCC活動
  • 日本
  • 欧州:Ofcomおよびその他
  • カナダ
  • エコシステム・利用例

第4章 ホワイトスペース通信:標準化・産業

  • WSアライアンス
  • WIF - WS
  • WS-関連のIEEE標準
  • CogNeA および ECMA活動
  • IETF-PAWS
  • ETSI
  • 産業
  • 市場
  • 試験・プロジェクト

第5章 M2M通信およびWS

  • 特殊ニーズ
  • 標準化
  • 市場
  • 産業-革新
  • TVWSの役割

第6章 結論

図表

目次

Target Audience

This report is written for a wide population of researches, technical and sales staff involved in the developing of the Cognitive Radio technologies, particular in the White Spaces environment to enhance M2M communications. It is recommended for both service providers and vendors that are working with related technologies.

Brief

The value in machines having wireless communications has long been understood and a large market is predicted for many years. That this has not transpired yet has been because of the difficulty of meeting all the requirements within the constraints of the available radio spectrum.

These constraints changed significantly with the advent of White Space (WS) availability.

The report concentrates on the development of White Spaces communications as one of the first technologies that utilizes properties of reconfigurable radio. It shows that the combination of spectrum awareness together with the selection of White Spaces frequencies windows create a new modern multi-applications industry. The report analyzes specifics of White Spaces communications in such environments and reflects communications benefits and issues. The White Spaces communications market is just evolving and promises multiple applications; one of such applications - M2M communications - is detailed.

The report goal was to analyze M2M communications based on utilization of White Spaces. To reach this goal:

  • 1. Reconfigurable radio analysis was performed to show roots of spectrum sensing in WS communications. Technologies, standards, markets, industry and applications of reconfigurable radio were addressed.
  • 2. White Spaces communications origin, properties, regulations, standards and industry were analyzed.
  • 3. Development of the evolving industry - M2M/IoT communications - was addressed. For this purposes, specifics of such communications, their standardization, market properties and industry have been presented.
  • 4. WS-supported M2M communications were analyzed; the evolving industry activity, standardizations efforts and specifics have been presented. In particular, the Weightless standard development was addressed.

The report is written for a wide audience of researches, engineers and managers that are involved in the development and utilization of cognitive radios and M2M communications for commercial markets.

Table of Contents

1.0 Introduction

  • 1.1 General
  • 1.2 Scope
    • 1.2.1 Major Goal
  • 1.3 Research Methodology
  • 1.4 Target Audience

2.0 Software Defined and Cognitive Radios

  • 2.1 General
  • 2.2 Purpose
  • 2.3 Definitions (WIF, FCC, ITU)
    • 2.3.1 Wireless Innovation Forum Position
  • 2.4 SDR: Regulations
    • 2.4.1 FCC
      • 2.4.1.1 Equipment Type
      • 2.4.1.2 Process
      • 2.4.1.3 Application Guide
      • 2.4.1.4 First Approval
    • 2.4.2 ITU
    • 2.4.3 Ofcom
  • 2.5 Standardization Organizations Efforts
    • 2.5.1 ITU-R
    • 2.5.2 ETSI
      • 2.5.2.1 General
      • 2.5.2.2 Major Points
    • 2.5.3 3GPP
    • 2.5.4 IEEE
    • 2.5.5 NASA
  • 2.6 Considerations
  • 2.7 Properties
    • 2.7.1 Layers
    • 2.7.2 Details
    • 2.7.3 Versatility
    • 2.7.4 Issues
  • 2.8 SDR Implementations
  • 2.9 Applications
    • 2.9.1 Commercial
    • 2.9.2 SDR/CR in Military
      • 2.9.2.1 SCA
    • 2.9.3 Public Safety Communications (PSC)
  • 2.10 SDR/CR: Benefits
  • 2.11 Impact
    • 2.11.1 Geographical Differences
  • 2.12 Market
    • 2.12.1 Landscape
      • 2.12.1.1 Factors
    • 2.12.2 Trends
    • 2.12.3 Cost
    • 2.12.4 Different Perspective
    • 2.12.5 Market Drivers-Summary
    • 2.12.6 Market Forecast
    • 2.12.6.1 Model Assumptions
    • 2.12.6.2 Estimate
  • 2.13 Industry
    • Aeronix (SDR Components)
    • AirNet Communications (SDR Base Stations)
    • AirSpan (BS)
    • Alcatel-Lucent (Base Stations)
    • Analog Devises (Chipsets)
    • Array Systems Computing (DSP)
    • Cambridge Consultants (PHY, Base Station)
    • Carlson Wireless (Platform)
    • Cisco (802.11a)
    • CRT (CR SW)
    • General Dynamics (Platform)
    • DataSoft (SDR Design, SW)
    • Digital Receiver Technology (Radio Modules)
    • Etherstack (Software)
    • Ericsson
    • Green Hills (Software)
    • Harris (SDR)
    • Huawei (Platform)
    • Intel (Platform)
    • Lockheed Martin
    • Lyrtech - Nutaq (DSP and FPGA development solutions)
    • Motorola Solutions (BS)
    • Nokia Siemens Networks (Base Station)
    • Objective Interface Systems (Software)
    • PrismTech (SDR Development Environment)
    • Rockwell Collins (Radios)
    • Spectrum Signal Processing (Platforms)
    • Tecore Networks (Infrastructure)
    • Thales (Radio)
    • TI (Chips)
    • Vanu (Base Stations)
    • Wind River (Software)
    • Xilinx (Chips, SDR Development Kit)
    • xG Technology (Radio)
    • ZTE (Platforms)

3.0 White Spaces Communications: Regulations

  • 3.1 Definition
  • 3.2 Rational
  • 3.3 FCC Activity
    • 3.3.1 Start
    • 3.3.2 Devices
    • 3.3.3 Clarifications
      • 3.3.3.1 Sensing
      • 3.3.3.2 Power
    • 3.3.4 Specifics
      • 3.3.4.1 Protection
      • 3.3.4.2 Frequencies
      • 3.3.4.3 TVWS Database (U.S.)
    • 3.3.5 Further Work
  • 3.4 Japan
  • 3.5 Europe: Ofcom and Other
  • 3.6 Canada
  • 3.7 Ecosystem and Use Cases

4.0 White Spaces Communications: Standardization and Industry

  • 4.1 WS Alliance
    • 4.1.1 Wi-FAR
    • 4.1.2 WSAConnect
  • 4.2 WIF - WS
  • 4.3 WS-related IEEE Standards
    • 4.3.1 IEEE 802.11af - 2013
      • 4.3.1.1 General: Expectations - Wi-Fi on Steroids
      • 4.3.1.2 Differences
      • 4.3.1.3 Benefits
      • 4.3.1.4 Specifics
      • 4.3.1.4.1 Building Blocks
      • 4.3.1.4.2 PHY
      • 4.3.1.5 Prototyping
      • 4.3.1.6 Summary
    • 4.3.2 IEEE SCC 41 - DySpan SC
      • 4.3.2.1 IEEE 1900.4
      • 4.3.2.2 IEEE 1900.4a - 2011
      • 4.3.2.3 IEEE 1900.4.1
    • 4.3.3 IEEE 802.22 - 2011
      • 4.3.3.1 General
      • 4.3.3.2 WG 802.22 and FCC
      • 4.3.3.3 Overview
      • 4.3.3.4 Physical Layer - Major Characteristics
      • 4.3.3.4.1 Frames
      • 4.3.3.5 Cognitive Functions and MAC
      • 4.3.3.6 IEEE 802.22.1
      • 4.3.3.7 IEEE 802.22.2
      • 4.3.3.8 IEEE 802.22a-2014
      • 4.3.3.9 P802.22b
      • 4.3.3.10 Summary-IEEE802.22
    • 4.3.4 IEEE 802.19
      • 4.3.4.1 IEEE 802.19.1-2014
    • 4.3.5 IEEE 802.15.4m-2014
  • 4.4 CogNeA and ECMA Activity
    • 4.4.1 CogNeA
      • 4.4.1.1 Development
    • 4.4.2 ECMA-392-2011
  • 4.5 IETF-PAWS
  • 4.6 ETSI
  • 4.7 Industry
    • Adaptrum
    • Aviacomm
    • Carlson Wireless
    • KTS Wireless
    • Metric Systems
    • Neul
    • Redline Communications
    • Sinecom
    • Spectrum Bridge
    • TI/Azcom
  • 4.8 Market
  • 4.9 Trials and Projects
    • 4.9.1 London Trial
    • 4.9.2 Additional Information
    • 4.9.3 Microsoft Wi-Fi-NC and Other
    • 4.9.4 Utility
    • 4.9.5 Airspan Trials
    • 4.9.6 Neul Trials

5.0 M2M Communications and WS

  • 5.1 Special Needs
    • 5.1.1 Spectrum
    • 5.1.2 Summary
  • 5.2 Standardization
    • 5.2.1 IEEE
    • 5.2.2 ETSI
    • 5.2.3 ITU
    • 5.2.4 oneM2M
    • 5.2.5 ISO/IES
  • 5.3 Market
    • 5.3.1 Data
    • 5.3.2 Estimate
  • 5.4 Industry-Innovations
    • Arqiva/Sensus
    • Kore Telematics
    • M2M Spectrum Networks
    • On-Ramp
    • SigFox/Telit
    • Telensa/Plextek
  • 5.5 Role of TVWS
    • 5.5.1 Progress
    • 5.5.2 Challenges
    • 5.5.3 Solution
    • 5.5.4 Cambridge TVWS Consortium - Cambridge Trial
    • 5.5.5 Development of Weightless Technology
      • 5.5.5.1 Standard
      • 5.5.5.2 Details
      • 5.5.5.3 Specifics
      • 5.5.5.4 Neul
        • 5.5.5.4.1 Weightless Chip
        • 5.5.5.4.2 Technology Features
      • 5.5.5.5 Network Structure
        • 5.5.5.5.1 Plan
        • 5.5.5.5.2 Performance Summary
      • 5.5.5.6 Specific Details
        • 5.5.5.6.1 Range of Applications
      • 5.5.5.7 NextG-Com: Industry
      • 5.5.5.8 Market Considerations

6.0 Conclusions

  • Figure 1: Conceptual View
  • Figure 2: Reconfigurable BS
  • Figure 3: SDR: Reference Architecture
  • Figure 4: SDR and OSI Reference Model
  • Figure 5: PSC Specifics
  • Figure 6: TAM: Global SDR-based Equipment Sales ($B)
  • Figure 7: SDR Market Segments
  • Figure 8: SDR Market Geography (2014)
  • Figure 9: TVWS Channels
  • Figure 10: UK TVWS- Spectrum
  • Figure 11: Architecture: 802.19.1
  • Figure 12: TVWS Market
  • Figure 13: IoT Environment
  • Figure 14: ETSI Activity
  • Figure 15: Use Cases
  • Figure 16: M2M Applications
  • Figure 17: Projections: M2M Traffic Growth (PB/Month)
  • Figure 18: TAM: M2M Communications Revenue ($B)
  • Figure 19: Weightless Networking: Simplified
  • Table 1: SDR Tiers
  • Table 2: CR Features
  • Table 3: U.S. - PSC Users
  • Table 4: SDR Market Drivers
  • Table 5: TV Channels: WS Frequencies Allowed by FCC
  • Table 6: TV Channels and Fixed TVBDs
  • Table 7: Database Status (2014)
  • Table 8: IEEE WS-related Standards
  • Table 9: Use Cases
  • Table 10: Major Characteristics: IEEE 802.22
  • Table 11: Key M2M Elements
  • Table 12: Iceni Characteristics
Back to Top