表紙
市場調査レポート

M2M通信・インテリジェント交通システム(ITS):市場・標準化・技術

M2M Communications and Intelligent Transportation Systems: Markets, Standardization, Technologies

発行 Practel, Inc. 商品コード 273162
出版日 ページ情報 英文 140 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=105.69円で換算しております。
Back to Top
M2M通信・インテリジェント交通システム(ITS):市場・標準化・技術 M2M Communications and Intelligent Transportation Systems: Markets, Standardization, Technologies
出版日: 2013年05月30日 ページ情報: 英文 140 Pages
概要

本レポートでは、インテリジェント交通システム(ITS)における比較的新しい動向−M2M通信の進展への依存について取り上げ、ITS標準、アプリケーションおよび市場に関する情報のアップデート、M2M産業、標準化、仕様および市場の分析、M2M ITSアプリケーションの分析などをまとめ、概略以下の構成でお届けいたします。

第1章 イントロダクション

第2章 ITS開発

  • 概要
  • ITSの歴史:米国
  • レイヤーとコンポーネント:道路
  • 主要技術
  • サブシステム
  • ITSのアーキテクチャー:米国
  • 日本のITS
  • 韓国のITS
  • 欧州のITS

第3章 ITS標準化:進行中

  • 概要
  • ITSプロトコル(NTCIP)向け国家交通通信
  • ITU
  • ITSA
  • サマリー

第4章 ITSアプリケーション

第5章 ITS市場の統計

  • 概要
  • 予測の前提条件
  • 推計

第6章 標準化:5.9GHz DSRC

  • 歴史
  • 構造・プロトコル
  • 要件
  • IEEE 802.11p
  • ETSI-G5
  • IEEE 1609
  • ASTM標準
  • サマリー:IEEE・ISO

第7章 5.9GHz DSRCの開発

  • 概要
  • コンポーネント
  • 取り組み
  • 詳細
  • メリット・デメリット:5.9GHz DSRC
  • DSRCチャンネル
  • サービス分類/QoS
  • 規制
  • 比較

第8章 市場セグメント・産業:5.9GHz DSRC

  • 市場成長促進因子
  • 市場要件
  • データ
  • 市場推計
  • 産業

第9章 M2M仕様

  • 定義・プロセス
  • 統計
  • 特徴
  • 課題
  • 進歩

第10章 M2M標準化

  • OneM2M Alliance
  • Telefonica multi-Operators Alliance
  • M2M Alliance
  • Open Mobile Alliance (OMA)
  • ETSI TC
  • GSC MSTF
  • ITU
  • WAVE2M
  • IPSO Alliance
  • IETF および IP/WSN
  • TIA
  • サマリー

第11章 M2M通信産業

第12章 M2M通信市場・アプリケーション

  • 状況
  • 構造
  • 統計

第13章 M2M・ITS

  • 概要
  • M2M ITSの主要アプリケーション
  • メリット・デメリット
  • 違い
  • センサー

第14章 結論

付録:GeoNetプロトコル

図表リスト

目次

This report addresses a relatively new trend in the Intelligent Transportation Systems (ITS) development - its dependence on the progress in M2M communications. The report updates information on ITS standards, applications and markets. As an example, the 5.9 DSRC technology, industry and markets are detailed.

Report concentrates on specifics of M2M communications and the necessity to design communications technologies that agree with M2M specifics. The M2M industry, standardization, specifics and markets are addressed. Properties of M2M ITS applications are analyzed.

The report shows that the ITS segment of the M2M communications market is strong and growing fast. In a couple of years, there will be billions of M2M networked sensors that serve auto, location, traffic surveillance and monitoring and other ITS applications, communicating information that can help to cope with multiple issues on roads, saving human lives and contributing to the growth of our economy.

Research Methodology

Considerable research was done using the Internet. Information from various Web sites was studied and analyzed. Evaluation of publicly available marketing and technical publications was conducted. Telephone conversations and interviews were held with industry analysts, technical experts and executives. In addition to these interviews and primary research, secondary sources were used to develop a more complete mosaic of the market landscape, including industry and trade publications, conferences and seminars.

The overriding objective throughout the work has been to provide valid and relevant information. This has led to a continual review and update of the information content.

Target Audience

This report is important to a wide population of researches, technical and sales staff involved in the developing of high-speed wireless services and products for transportation. It is recommended for both service providers and vendors that are working with related technologies. The report also helps to understand relationship between wireless communications in the ITS environment and other technologies, such as M2M.

Table of Contents

1.0. Introduction

  • 1.1. Statistics
  • 1.2. Goal
  • 1.3. Scope
  • 1.4. Research Methodology
  • 1.5. Target Audience

2.0. ITS Development

  • 2.1. General
  • 2.2. ITS History: U.S.
  • 2.3. Structure
  • 2.4. Layers and Components-Roadways
  • 2.5. Key Technologies
  • 2.6. Subsystems
  • 2.7. ITS Architecture: U.S.
    • 2.7.1. General
    • 2.7.2. Functionalities
    • 2.7.3. Layers
      • 2.7.3.1. Details: Communications Layer
      • 2.7.3.2. Networks
      • 2.7.3.3. Version 7.0
  • 2.8. ITS in Japan
  • 2.9. ITS in South Korea
  • 2.10. ITS in Europe

3.0. ITS Standardization: In Progress

  • 3.1. Overview
  • 3.2. National Transportation Communications for ITS Protocol (NTCIP)
    • 3.2.1. Scope
    • 3.2.2. Family
  • 3.3. ITU
  • 3.4. ITSA
  • 3.5. Summary

4.0. ITS Applications

5.0. ITS Market Statistics

  • 5.1. General
  • 5.2. Assumptions
  • 5.3. Estimate

6.0. Standardization: 5.9 GHz DSRC

  • 6.1. History
  • 6.2. Structure and Protocols
  • 6.3. Requirements
  • 6.4. IEEE 802.11p
    • 6.4.1. General
    • 6.4.2. Objectives and Status
    • 6.4.3. Major Features: IEEE 802.11p
  • 6.5. ETSI-G5
  • 6.6. IEEE 1609
    • 6.6.1. General
    • 6.6.2. Overview
    • 6.6.3. IEEE 1609 in Use
  • 6.7. ASTM Standard
  • 6.8. Summary: IEEE and ISO

7.0. 5.9 GHz DSRC Development

  • 7.1. General
  • 7.2. Components
  • 7.3. Efforts
  • 7.4. Details
    • 7.4.1. Channel Designation
    • 7.4.2. Categories
    • 7.4.3. Applications
    • 7.4.4. Specification
    • 7.4.5. Summary: DSRC (5.9 GHz) Transmission Characteristics
  • 7.5. Benefits and Limitations - 5.9 GHz DSRC
    • 7.5.1. General
    • 7.5.2. Toll Industry Benefits
    • 7.5.3. Interoperability
    • 7.5.4. Limitations
  • 7.6. DSRC Channel
  • 7.7. Service Categories/QoS
    • 7.7.1. Service Requirements
  • 7.8. Regulations
    • 7.8.1. Licensing
  • 7.9. Comparison
    • 7.9.1. Japan and South Korea

8.0. Market Segment and Industry - 5.9 GHz DSRC

  • 8.1. Market Drivers
    • 8.1.1. Recent Deployments and Projects: Examples
  • 8.2. Market Requirements
  • 8.3. Data
  • 8.4. Market Estimate
  • 8.5. Industry
    • Arada
    • Arinc
    • Cohda
    • Kapsch TraffiCom
    • Oki
    • Savari
    • Sirit
    • TransCore
    • TechnoCom
    • Unex

9.0. M2M Specifics

  • 9.1. Definition and Process
  • 9.2. Statistics
  • 9.3. Properties
    • 9.3.1. Requirements and Current Status
      • 9.3.1.1. Cellular
      • 9.3.1.2. Short-range
      • 9.3.1.3. Open Standard
  • 9.4. Challenges
  • 9.5. Advances

10.0. M2M Standardization

  • 10.1. OneM2M Alliance
    • 10.1.1. Varieties
    • 10.1.2. Service Layer Architecture
    • 10.1.3. Benefits
  • 10.2. Telefonica multi-Operators Alliance
  • 10.3. M2M Alliance
  • 10.4. Open Mobile Alliance (OMA)
  • 10.5. ETSI TC
  • 10.6. GSC MSTF
  • 10.7. ITU
  • 10.8. WAVE2M
    • 10.8.1. Aim
    • 10.8.2. Platform
    • 10.8.3. Global
  • 10.9. IPSO Alliance
  • 10.10. IETF and IP/WSN
    • 10.10.1. Major Projects
      • 10.10.1.1. 6LoWPAN WG
        • 10.10.1.1.1. 6LoWPAN Development
        • 10.10.1.1.2. NanoStack
        • 10.10.1.1.3. Details
      • 10.10.1.2. ROLL WG
      • 10.10.1.3. CoAP
  • 10.11. TIA
  • 10.12. Summary

11.0. M2M Communications Industry

  • AT&T
  • Aeris
  • Axeda
  • Coronis
  • Cisco
  • Gemalto
  • InterDigital
  • Jasper Wireless
  • Kore Telematics
  • Libelium
  • Numerex
  • Qualcomm
  • Raco Wireless
  • Sensinode
  • Sigfox
  • Wireless Logic
  • Whizcomm

12.0. M2M Communications Markets and Applications

  • 12.1. Situation
  • 12.2. Structure
  • 12.3. Statistics

13.0. M2M and ITS

  • 13.1. General
  • 13.2. M2M ITS Major Applications
  • 13.3. Benefits and Limitations
  • 13.4. Differences
  • 13.5. Sensors

14.0. Conclusions

Attachment: GeoNet Protocol

List of Figures:

  • Figure 1: Wireless Communications: ITS Environment
  • Figure 2: ITS Architecture
  • Figure 3: Europe
  • Figure 4: U.S.
  • Figure 5: International
  • Figure 6: NTCIP Structure
  • Figure 7: TAM: Global ITS ($B)
  • Figure 8: TAM: ITS WICT- Global ($B)
  • Figure 9: ITS Equipment Sales by Regions ($B)
  • Figure 10: Communications Model: WAVE
  • Figure 11: N.A. 5.9 GHz DSRC Development: Organizations
  • Figure 12: 5.9 GHz DSRC Program Schedule (2001-2010)
  • Figure 13: ITS-DSRC
  • Figure 14: 5.9 GHz DSRC: Spectrum Allocation Details
  • Figure 15: Channel Assignment - 5.9 GHz DSRC
  • Figure 16: Details (10 MHz Channels)
  • Figure 17: Major Categories - 5.9 GHz DSRC
  • Figure 18: Illustration: Communications
  • Figure 19: Collision Detection/Avoidance System
  • Figure 20: Work Zone Warning
  • Figure 21: “Smart” Car
  • Figure 22: 5.9 GHz DSRC Rate vs. Distance
  • Figure 23: Logical Flow
  • Figure 24: DSRC Frequencies Planning
  • Figure 25: FCC Considerations
  • Figure 26: TAM U.S.: 5.9 GHz DSRC Tag Value ($B)
  • Figure 27: TAM U.S.: 5.9 GHz DSRC Tags Value (Unit Mil)
  • Figure 28: TAM U.S.: 5.9 GHz DSRC Readers & Associated Equipment Value (Unit Mil.)
  • Figure 29: TAM U.S.: 5.9 GHz DSRC Readers & Associated Equipment Value ($M)
  • Figure 30: M2M Process
  • Figure 31: Major Layers - M2M
  • Figure 32: ETSI Activity
  • Figure 33: TAM: Global M2M Market Worth ($B)
  • Figure 34: TAM: Cellular Services Revenue - M2M Support ($B)
  • Figure 35: TAM: U.S. M2M Sensors for ITS ($B)
  • Figure 36: Classification

List of Tables:

  • Table 1: Road Statistics
  • Table 2: ETSI G5; Services
  • Table 3: Layers and Channels
  • Table 4: 5.9 GHz DSRC U.S. Characteristics
  • Table 5: 5.9 GHz DSRC Advantages
  • Table 6: Comparison - 915 MHz and 5.9 GHz DSRC Properties
  • Table 7: Events Priorities
  • Table 8: Requirements
  • Table 9: Service-related Characteristics
  • Table 10: Characteristics
  • Table 11: Functionalities
  • Table 12: M2M Service Offerings - Major Service Providers
  • Table 13: Components
Back to Top