市場調査レポート

ブロードバンドイーサネット:長距離ネットワークへのアクセス - 技術・用途・市場

Broadband Ethernet: From Access to Long-Haul Networks - Technologies, Applications and Markets

発行 Practel, Inc. 商品コード 225009
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=102.95円で換算しております。
Back to Top
ブロードバンドイーサネット:長距離ネットワークへのアクセス - 技術・用途・市場 Broadband Ethernet: From Access to Long-Haul Networks - Technologies, Applications and Markets
出版日: 2011年11月30日 ページ情報: 英文
概要

大手のインターネット通信業者(キャリア)が提供しているバックボーンのインターネット回線の容量は、年間75%〜125%の拡大を続けています。ブロードバンドのインターネットユーザーの急増と、HDVなど大容量回線を必要とするアプリケーションの利用が増加したことにより、公共・民間のネットワークは、回線容量に対する、前例のないエンドユーザー需要に直面しています。その結果、費用対効果のネットワークキャパシティを拡張する必要性が生じています。

当レポートでは、技術およびマーケティングの側面から、ブロードバンドイーサネット(Ethernet)通信について分析し、様々なネットワークレベルでのイーサネットの増設について、超高速通信インフラの急速な展開とともに、長距離ネットワークへのアクセスに関する情報を提供して、概略以下の構成でお届けいたします。

第1章 イントロダクション

第2章 長距離とメトロ:超高速技術と標準化プロセス

  • 促進要因
  • 組織
  • 技術の現状
  • 標準化の利点と先進技術

第3章 業界(40GE・100GE)

  • Alcatel-Lucent(ネットワーク要素)
  • Altera(IC)
  • Adva(プラットフォーム)
  • Applied Micro(IC)
  • Avago(モジュール)
  • Brocade(100Gb/sネットワーク要素)
  • Broadcom(IC)
  • Centallax(モジュール)
  • Cisco(ネットワーク要素)
  • Ciena(スイッチ・WDMプラットフォーム)
  • ClariPhy(チップセット)
  • Covega-Thorlabs Quantum Electronics(モジュレーター)
  • CyOptics(工学チップ)
  • ECI(プラットフォーム)
  • Ekinops(DWDM)
  • Ericsson(WDM)
  • Extreme Networks(イーサネット用スイッチ)
  • Huawei(DWDM)
  • Finisar(モジュール)
  • フジクラ(モジュール)
  • 富士通(ROADM)
  • Inphi(IC)
  • Infinera(ネットワーク要素)
  • JDSU(モジュール・IC)
  • Juniper(ルーター)
  • GigOptix(IC)
  • Gtran(IC)
  • Ixia(モジュール)
  • MultiPHY(IC)
  • MRV(WDM)
  • 日本電気(DWDM)
  • NeoPhotonics(モジュール)
  • NetLogic(モジュール)
  • Nokia Siemens Networks(DWDM)
  • Oclaro(IC)
  • ラピスセミコンダクタ(旧:OKIセミコンダクタ)(IC)
  • OpVista(ネットワーク要素)- Vello Systems
  • Opnext(プラットフォーム)
  • Picometrix(工学レシーバー)
  • Reflex Photonics(モジュール)
  • Sarance Technologies(IC)- Xilinxが買収(2011年)
  • Sembar(モジュール)
  • Semtech(IC)
  • SEDU(モジュール)
  • Sorrento Networks(DWDM)
  • Triquint(IC)
  • Tellabs(プラットフォーム)
  • U2t Photonics(IC)
  • Voltaire(モジュール)- Mellanoxが買収
  • Xilinx(IC)
  • Xtera(WDM)

第4章 サービスプロバイダー:40GE・100GEサービス

  • AT&T
  • Global Crossing
  • Level 3
  • NTT
  • Sprint
  • Qwest (CenturyLink)
  • SurfNet
  • Telefonica
  • TeliaSonera
  • Verizon
  • XO

第5章 市場:40GE・100GE

  • 市場の特徴
  • 市場の予測

第6章 イーサネットベースのPONへの道

  • 理由
  • フォーマット

第7章 GE-PON規格

  • 概要
  • 送信フォーマット
  • 速度
  • MPCP
  • トポロジーエミュレーションサブレイヤー
  • OAM
  • FEC
  • セキュリティ
  • QoS・GE-PON
  • GE-PON vs. FSAN技術

第8章 GE-PON市場

  • PONの商業化
  • GE-PON市場予測

第9章 GE-PONベンダー

第10章 10GE-PON

  • 目標
  • IEEE - 標準化
  • 10GE-PON技術

第11章 IEEE vs. ITU

第12章 10GE-PON市場

  • 概要
  • 促進要因と対象アプリケーション
  • 市場の予測

第13章 10GE-PONベンダー

第14章 結論

図表

目次

The amount of backbone Internet bandwidth maintained by the major Internet carriers has been expanding at 75% to125% per year, driven by the explosion of broadband Internet users and growing use of bandwidth-hungry applications such as HDV. As a result, public and private networks are experiencing unprecedented end-user demand for bandwidth, resulting in a need to cost-effectively scale the capacity of networks.

This report addresses technological and marketing aspects of broadband Ethernet communications. The report reflects proliferation of Ethernet on various networking levels: from access to long-haul, with rapid deployments of the ultra-high speed communication infrastructure.

At the access networks level, the report shows significant advances in the standardization of GE-PON and 10GE-PON technologies. The IEEE standards have been published and the industry actively supports these developments. The report provides technological and marketing analysis of Ethernet-based PONs.

In metro and long-haul applications the IEEE supported standardization of 40GE and 100GE technologies. The report follows this process; and concentrates on already approved recent standards. The marketing and technological analysis of these ultra-high speed Ethernet applications and the industry is provided.

Altogether, the report objective was to show that:

  • Broadband Ethernet is winning leading positions in packet-based communications;
  • Broadband Ethernet penetrated all networking layers - from access to long-haul;
  • The broadband Ethernet industry is supported by the standardization process conducted by the leading standardization organizations;
  • 10GE-PON has been developed on the already established GE-PON base;
  • Both GE-PON and 10GE-PON markets are growing;
  • 40GE and 100GE standardization was the industry response on rapidly growing users' requirements for ultra-high speed communications;
  • Both technologies have been already commercialized, with the 40GE established market (though still immature). The 100GE market also shows all signs of healthy growth and promises to reach sizable amount already in 2012-2013.
  • Several service providers are offering services based on E-PONs; major service providers are also offering 40GE/100GE-based services.

Table of Contents

1.0. Introduction

  • 1.1. General
  • 1.2. Goal
  • 1.3. Research Methodology
  • 1.4. Target Audience

2.0. Long-haul and Metro: Ultra-high Speed Technologies and Standardization Process

  • 2.1. Drivers
  • 2.2. Organizations
    • 2.2.1. IEEE
      • 2.2.1.1. 802.3ba Scope and Time Schedule
      • 2.2.1.2. Objectives
      • 2.2.1.3. Details
      • 2.2.1.4. Interfaces
      • 2.2.1.5. Sublayers - Architecture
      • 2.2.1.6. IEEE 802.3bg
      • 2.2.1.7. IEEE 802.3bj
    • 2.2.2. ITU-T
      • 2.2.2.1. Cooperation
    • 2.2.3. OIF
    • 2.2.4. Additions
    • 2.2.5. Interest Group
    • 2.2.6. X40
    • 2.2.7. SSR-40
    • 2.2.8. 10x10 MSA
  • 2.3. Current Status of Technologies
    • 2.3.1. 40 Gb/s Transmission
      • 2.3.1.1. Modulation: Preliminary
      • 2.3.1.2. 40 Gb/s Transmission Specifics
    • 2.3.2. 100 Gb/s Transmission
      • 2.3.2.1. Details
      • 2.3.2.2. DP QPSK
      • 2.3.2.3. Coherent Receiver
      • 2.3.2.4. 100 Gb/s Transmission Specifics
  • 2.4. Benefits of Standardization and Advanced Technologies

3.0. Industry (40 Gb/s and 100 Gb/s Ethernet)

  • Alcatel-Lucent (Network Elements)
  • Altera (ICs)
  • Adva (Platform)
  • Applied Micro (ICs)
  • Avago (Modules)
  • Brocade (100 Gb/s NE)
  • Broadcom (ICs)
  • Centellax (Modules)
  • Cisco (NEs)
  • Ciena (Switching and WDM Platforms)
  • ClariPhy (Chipsets)
  • Covega - Thorlabs Quantum Electronics (Modulators)
  • CyOptics (Optical Chips)
  • ECI (Platforms)
  • Ekinops (DWDM)
  • Ericsson (WDM)
  • Extreme Networks (Ethernet Switches)
  • Huawei (DWDM)
  • Finisar (Modules)
  • Fujikura (Modules)
  • Fujitsu (ROADM)
  • Inphi (ICs)
  • Infinera (NEs)
  • JDSU (Modules and ICs)
  • Juniper (Router)
  • GigOptix (ICs)
  • Gtran (ICs)
  • Ixia (Modules)
  • MultiPHY (ICs)
  • MRV (WDM)
  • NEC (DWDM)
  • NeoPhotonics (Modules)
  • NetLogic (Modules)
  • Nokia Siemens Networks (DWDM)
  • Oclaro (ICs)
  • Oki Semiconductor (ICs)
  • OpVista (NEs) - Vello Systems
  • Opnext (Platform)
  • Picometrix (Optical Receivers)
  • Reflex Photonics (Modules)
  • Sarance Technologies (ICs) - Acquired by Xilinx in 2011
  • Sembarc (Modules)
  • Semtech (ICs)
  • SEDU (Modules)
  • Sorrento Networks (DWDM)
  • Triquint (ICs)
  • Tellabs (Platform)
  • U2t Photonics (ICs)
  • Voltaire (Switches)-Acquired by Mellanox
  • Xilinx (ICs)
  • Xtera (WDM)

4.0. Service Providers: 40GE and 100GE Services

  • AT&T
  • Global Crossing
  • Level 3
  • NTT
  • Sprint
  • Qwest (CenturyLink)
  • SurfNet
  • Telefonica
  • TeliaSonera
  • Verizon
  • XO

5.0. Market: 40GE and 100GE

  • 5.1. Market Characteristics
  • 5.2. Market Forecast
    • 5.2.1. Model Assumptions
    • 5.2.2. Analysis

6.0. Road to Ethernet-based PON

  • 6.1. Reasons
  • 6.2. Format

7.0. GE-PON Standard

  • 7.1. General
  • 7.2. Formats of Transmission
    • 7.2.1. Downstream and Upstream Separation
    • 7.2.2. Frequencies
    • 7.2.3. Topology
    • 7.2.4. Downstream Transmission
    • 7.2.5. Upstream Transmission
    • 7.2.6. Framing
  • 7.3. Rates
    • 7.3.1. Point-to-Point (P2P) Transmission
    • 7.3.2. Point-to-Multipoint (P2MP) Transmission
    • 7.3.3. Physical Layer
  • 7.4. Multi-Point Control Protocol (MPCP)
    • 7.4.1. General
    • 7.4.2. Modes
      • 7.4.2.1. Auto-Discovery
      • 7.4.2.2. Bandwidth Assignment Mode
  • 7.5. Topology Emulation Sub-layer
  • 7.6. OAM
  • 7.7. Forward Error Correction (FEC)
  • 7.8. Security
    • 7.8.1. General
    • 7.8.2. Solution
  • 7.9. Quality of Service (QoS) and GE-PON
  • 7.10. GE-PON vs. FSAN Technologies
  • 7.10.1. GE-PON Challenges
  • 7.10.2. Parameters
  • 7.10.3. Formats
  • 7.10.4. Summary
  • 7.10.5. Comparison

8.0. GE-PON Market

  • 8.1. PON Commercialized
  • 8.2. GE-PON Market Estimate
    • 8.2.1. Vendors Revenue
    • 8.2.2. Providers Revenue

9.0. GE-PON Vendors

  • Ad-Net
  • ADK
  • Broadcom
  • Corecess
  • Enablence
  • Marvell
  • Mitsubishi Electric
  • NEC
  • OBN
  • Occam - Acquired by Calix
  • OFN
  • PBN
  • PMC
  • Source Photonics
  • Sun Telecom
  • Sumitomo Electric Networks
  • Tainet
  • UTStarcom
  • Vitesse
  • Wuhan Xunten
  • ZTE

10.0. 10GE- PON

  • 10.1. Goal
  • 10.2. IEEE - Standardization
    • 10.2.1. Status
    • 10.2.2. Schedule
    • 10.2.3. Standard's Scope and Objectives
  • 10.3. 10GE-PON Technology
    • 10.3.1. Inheritance
    • 10.3.2. List
    • 10.3.3. ONU Types
    • 10.3.4. Major Improvements
      • 10.3.4.1. Improved FEC
      • 10.3.4.2. Interfaces and Power Budget
      • 10.3.4.3. Signal Formats and MAC Protocol
        • 10.3.4.3.1. Transmission
        • 10.3.4.3.2. Spectrum Allocation
        • 10.3.4.3.3. Dynamic Bandwidth Allocation

11.0. IEEE vs. ITU

12.0. 10GE-PON Market

  • 12.1. General
  • 12.2. Drivers and Target Applications
    • 12.2.1. Major Applications
    • 12.2.2. Regional Differences
  • 12.3. Market Estimate

13.0. 10GE-PON Vendors

  • Alloptic (Was acquired by CTDI in 2010)
  • Broadcom
  • Cortina
  • HISense
  • Hitachi
  • Gennum
  • GigaLight
  • K-Micro
  • Ligent Photonics
  • Mitsubishi Electric
  • Neophotonics
  • PMC-Sierra
  • Qualcomm-Atheros
  • Source Photonics
  • Vitesse
  • ZTE

14.0. Conclusions

LIST OF FIGURES:

  • Figure 1: OTN Frame Structure
  • Figure 2: 40 Gb/s Network Scenario
  • Figure 3: Illustration
  • Figure 4: Additional Challenges
  • Figure 5: G.709 Network Scenario
  • Figure 6: 100 Gb/s Transmission Standardization
  • Figure 7: Major Optical Networking Segments (2011-2012)
  • Figure 8: Projections: Ports Sales
  • Figure 9: Estimate - Global Sales of 40 Gb/s Equipment
  • Figure 10: Estimate - Global Sales of 100 Gb/s Equipment
  • Figure 11: PM: Service Providers Revenue - 40 Gb/s Services - Global ($B)
  • Figure 12: PM: Service Providers Revenue - 100 Gb/s Services - Global ($M)
  • Figure 13: Ethernet Channel Simplified
  • Figure 14: Ethernet Frame - Basic Structure
  • Figure 15: GE-PON Channel
  • Figure 16: Illustration - Downstream Transmission
  • Figure 17: Illustration - Upstream Transmission
  • Figure 18: Illustration - Downstream Frame
  • Figure 19: Upstream Frame
  • Figure 20: GE-PON OAM Process Standardization
  • Figure 21: GE-PON Functionality Layers
  • Figure 22: Penetration Dependence
  • Figure 23: Asia Pacific: Subscribers Base for GE-PON (Mil.)
  • Figure 24: TAM Asia Pacific: GE-PON Equipment Sales ($B)
  • Figure 25: Estimate: GE-PON Providers Revenue (Asia Pacific; $M)
  • Figure 26: GE-PON - 10GE-PON Scenario
  • Figure 27: 10GE-PON Protocol Stack
  • Figure 28: 10GE-PON Spectrum Allocation
  • Figure 29: U.S. Providers
  • Figure 30: TAM: Asia Pacific 10GE-PON Equipment sales ($B)

LIST OF TABLES:

  • Table 1: IEEE 802.3ba Copper Interfaces
  • Table 2: IEEE802.3ba Optical Interfaces
  • Table 3: 100 Gb/s - ITU and IEEE
  • Table 4: 100 Gb/s Design Requirements
  • Table 5: OTU Formats
  • Table 6: 40 Gb/s Equipment Distribution (initial market)
  • Table 7: EFM Physical Layer
  • Table 8: Major PON Providers: Illustration
  • Table 9: PON Service Scenarios
  • Table 10: GE-PON Market Statistics (Asia Pacific)
  • Table 11: GE-PON Equipment Market Components Distribution (2010)
  • Table 12: IEEE 802.3av WG Schedule
  • Table 13: PRX30 Downstream Specification
  • Table 14: Interfaces
Back to Top