市場調査レポート

超高速光ファイバー通信の進歩と課題:技術・市場分析

New Frontiers: Progress and Issues of Ultra-high Speed Fiber Optical Communications - Assessment Technology and Market

発行 Practel, Inc. 商品コード 126642
出版日 ページ情報 英文 172 Pages
納期: 即日から翌営業日
価格
こちらの商品の販売は終了いたしました。
Back to Top
超高速光ファイバー通信の進歩と課題:技術・市場分析 New Frontiers: Progress and Issues of Ultra-high Speed Fiber Optical Communications - Assessment Technology and Market
出版日: 2010年08月13日 ページ情報: 英文 172 Pages

当商品の販売は、2016年07月01日を持ちまして終了しました。

概要

当レポートでは、超高速光ファイバー通信市場の発展について調査し、技術仕様、PMDの特徴とその補償手法、マーケティング動向、ベンダー65社のプロファイル、標準化活動などを分析しており、40 Gb/s および 100 Gb/s 光ファイバー通信関連の問題および市場予測などについてまとめ、概略下記の構成でお届けいたします。

第1章 イントロダクション

第2章 標準化プロセス

  • IEEE
  • ITU-T
  • 提携
  • 利益団体
  • 産業活動
  • "Road to 100G" アライアンス
  • X40
  • SSR-40
  • 標準化の促進因子・課題:100Gb/s
  • 技術の現況
  • OIF Framework Document: 100G

第3章 機能障害

第4章 高速システムおよびPMD

  • 概要
  • 説明:高速送信
  • 40G
  • 課題:40Gb/s - 100Gb/s

第5章 高速送信のアプリケーション

第6章 PMDの性質・特徴

  • 課題
  • 効果

第7章 PMDの効果および補償法

  • 概要
  • ネットワーク設計
  • 補償技術
  • 電子的方法
  • モード結合:ファイバー手法
  • 偏波保持ファイバー(PMF)
  • PMD許容差の増加
  • 「ユニバーサル」補償器

第8章 市場予測

  • 40および100Gbps:次の市場ステップ
  • 現時点
  • PMDC市場の促進因子
  • 市場予測

第9章 PMDC市場参入企業

  • General Photonics
  • OZ OPTICS
  • StrataLight (OpNext による買収:2009年)

第10章 主要メーカー:40Gb/s および 100/Gbs システムコンポーネント

第11章 主要メーカー:40Gb/s および 100/Gbs 送信プラットフォーム

第12章 結論

付録?〜?

図表

目次

Abstract

Research Methodology

Considerable research was done using the Internet. Information from various Web sites was studied and analyzed; evaluation of publicly available marketing and technical publications was also conducted. Telephone conversations and interviews were held with industry analysts, technical experts and executives. In addition to these interviews and primary research, secondary sources were used to develop a more complete mosaic of the market landscape, including industry and trade publications, conferences and seminars.

The overriding objective throughout the work has been to provide valid and relevant information. This has led to a continual review and update of the information content.

Target Audience

This report analyzes a complicated landscape of high-speed (40 Gb/s and 100 Gb/s) optical systems. It targets service providers, vendors, network operators and managers, Enterprise IT staff, investors and end users seeking to gain a deeper understanding of the gradual migration various types of the network towards such high - speeds transmission.

End users can also gain a more detailed understanding of product' s market and their capabilities; as well as the economics of these technologies products to improve cost efficiency of communications.

Brief

This issue of the report reflects dynamics of the high-speed optical transmission systems technologies and markets and provides up to date analysis of their benefits and issues; it continues the Practel project in the analysis of high-speed optical communications.

At the present time, the industry is witnessing the rising interest for high-speed communications; and the advent of 40 Gb/s pipes in carrier networks has finally arrived. 100 Gb/s systems wide commercialization is expected in a few years. Besides traditional applications, there are many new applications for such high-speed communications (for example establishing connections between peta-scale systems, or modernizing SAN systems).

2007 was the first year when sizable volume of 40 Gb/s units was shipped by the industry. The emergence of 40G POS interfaces for backbone routers lead to the popularity of WDM backbone transportation systems based on the single-channel 40G technology. Most mainstream operators in Europe, America, and Japan have begun planning or deploying long - haul backbone networks and backbone MANs. AT&T, NTT, TransTeleCom, Telefonica, and Verizon have already constructed 40 Gb/s networks and are offering commercial services. DT, Swisscom, and FT are planning theirs; and China Telecom is deploying its 40 Gb/s network connecting Shanghai to Wuxi.

2007-2008 also were years of field testing 100 Gb/s systems. For example, Verizon completed the first field test of 100 Gb/s optical transmission on a live, in-service 312-mile network route between Tampa, Fl. and Miami. In 2009, Verizon put in service the first 100 Gb/s link in France.

There are several factors in re-discovering attractiveness of such transmission; the most important from them are:

  • Constantly raising demand for data spectrum
  • Future economics
  • Increasing fiber plant utilization
  • Gradual maturity of standardization activity.

Among areas the most demanding for high-speed communications systems are Internet data and entertainment traffic, such as HD and SHD format signals that require significant bandwidth (measured in Gb/s) for each wired household.

Though the industry has not reached the level of fiber bandwidth exhaustion, there are regions with critical values (of 65%-70% of fiber plant utilization) and carriers are looking for alternatives to laying new fiber.

In 2010, the IEEE ratified the 802.3ba standard; this assured vendors and providers that high-speed communications is on track to wide commercialization. The ITU is making progress in extension of the ONT development (ODU4); OIF as well as other organizations are also actively working to develop standardized high-speed transmission.

Based on these factors, the authors of this report analyzed the development of the high-speed communications industry with the emphasis on:

  • Technologies specifics
  • PMD characteristics and methods for its compensation
  • Marketing trends
  • Vendors' portfolios survey (sixty-five vendors)
  • Standardization activity.

The report addresses these and other related issues; it shows that 40 Gb/s and 100 Gb/s fiber optics communications is today reality; and, depending on the global economy conditions, these systems proliferation is expected in the 2012-2014 time frame.

Table of Contents

1.0 Introduction

  • 1.1 Recent History
  • 1.2 Standardization Activity
  • 1.3 Challenges and Drivers
  • 1.4 Goals
  • 1.5 Dispersion
  • 1.6 Demand
  • 1.7 Scope
  • 1.8 Research Methodology
  • 1.9 Target Audience8

2.0 Standardization Process

  • 2.1 IEEE
    • 2.1.1 Major Milestones
    • 2.1.2 Synopsis
    • 2.1.3 Interfaces
  • 2.2 ITU-T
  • 2.3 Cooperation
  • 2.4 Interest Group
  • 2.5 Industry Activity
  • 2.6 "Road to 100G" Alliance
  • 2.7 X40
  • 2.8 SSR-40
  • 2.9 Standardization Drivers and Issues: 100 Gb/s
    • 2.9.1 Demand
    • 2.9.2 Benefits
  • 2.10 Current Status of Technologies
    • 2.10.1 40 Gb/s Transmission
      • 2.10.1.1 Modulation
    • 2.10.2 100 Gb/s Transmission
      • 2.10.2.1 Details
  • 2.11 OIF Framework Document: 100G
    • 2.11.1 DP QPSK
    • 2.11.2 Coherent Receiver
    • 2.11.3 Layers

3.0 Impairments

4.0 High-rate Systems and PMD

  • 4.1 General
    • 4.1.1 Standards
    • 4.1.2 Interest
  • 4.2 Directions: High-speed Transmission
    • 4.2.1 Specifics
  • 4.3 40G: Constrains and Perspectives
    • 4.3.1 Perspectives
  • 4.4 Issues: 40 Gb/s-100 Gb/s
    • 4.4.1 ICs-40 Gb/s
    • 4.4.2 Optics-40 Gb/s

5.0 Applications-High-rate Transmission

6.0 PMD Nature and Characteristics

  • 6.1 Challenge
  • 6.2 Effect
    • 6.2.1 Cause and Nature
    • 6.2.2 Statistics
    • 6.2.3 Penalties

7.0 PMD Effect and Compensation Methods

  • 7.1 General
  • 7.2 Network Design
    • 7.2.1 Role of Modulation
  • 7.3 Compensation Techniques
    • 7.3.1 Optical Compensation
      • 7.3.1.1 Standards
      • 7.3.1.2 Techniques
      • 7.3.1.3 Classification Based on Order of Compensation
      • 7.3.1.4 Example
      • 7.3.1.5 Details
  • 7.4 Electronics Methods
  • 7.5 Mode Coupling - Fiber Method
  • 7.6 Polarization Maintaining Fiber
    • 7.6.1 Fiber Types
    • 7.6.2 Fiber PMD Audits
  • 7.7 Increasing PMD Tolerance
  • 7.8 "Universal" Compensator

8.0 Market Estimate

  • 8.1 40 and 100Gbps: Next Market Steps
  • 8.2 Present Time
    • 8.2.1 Core IP Networking Drivers
    • 8.2.2 From 40 Gb/s to 100 Gb/s
    • 8.2.3 Market Characteristics
  • 8.3 PMDC Market Drivers
    • 8.3.1 CAPEX Savings
    • 8.3.2 OPEX Savings
    • 8.3.3 Technological Factors
  • 8.4 Market Forecast
    • 8.4.1 Model Assumptions
    • 8.4.2 Analysis
      • 8.4.2.1 Market Estimate for High-rate Transmission Systems
      • 8.4.2.2 PMDC Market

9.0 PMDC Market Players

  • General Photonics
  • OZ OPTICS
  • StrataLight (acquired by OpNext in 2009)

10.0 Manufacturers: 40 Gb/ and 100 Gb/s Systems Components

  • Altera
  • AppliedMicro
  • API-Picometrix
  • Avalon Microelectronics
  • Avago
  • Bay Microsystems
  • Centellax
  • ColarChip
  • CoreOptics (Acquired by Cisco in 2010)
  • Corning
  • Discovery Semiconductors
  • Covega
  • Enablence
  • Finisar
  • Fujitsu
  • GigaOptix
  • IBM (in collaboration with Cisco)
  • Inphi
  • Intel
  • Ixia
  • JDSU
  • JGKB Photonics (VersaWave)
  • Hitachi
  • Ofidium
  • Opnext
  • Optoplex
  • Oclaro
  • Oki Semiconductor
  • Narda
  • NeoPhotonics
  • NetLogic Microsystems
  • ReflexPhotonic
  • SMI (SemTech acquired this company in 2009)
  • StrataLight
  • Santur
  • TeraXion
  • Tpack
  • Triquint
  • u2t Photonics AG
  • VI Systems

11.0 Manufacturers: 40 Gb/s and 100 Gb/s Transmission Platforms

  • Alcatel-Lucent
  • Ciena
  • Cisco
  • ECI
  • Ekinops
  • Ericsson
  • Infinera
  • Juniper
  • Huawei
  • Fujitsu
  • Mintera (acquired by Oclaro in 2010)
  • MRV
  • NEC
  • Nokia Siemens Networks
  • OpVista
  • Qlogic
  • Opnext
  • Telcordia
  • Tellabs
  • Voltaire
  • Xtera
  • ZTE

12.0 Conclusions

Attachment I: Future Work

Attachment II: Formats and Modulations

Attachment III: Coherent Detection

Attachment IV: 40 Gb/s and 100 Gb/s Networks Deployment - Samples (2009-2010)

Back to Top