市場調査レポート

ワイヤレススマートセンサー通信開発の主要動向:技術および市場

Major Trends in Developing Wireless Smart Sensors Communications - Technologies and Markets

発行 Practel, Inc. 商品コード 115330
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
こちらの商品の販売は終了いたしました。
Back to Top
ワイヤレススマートセンサー通信開発の主要動向:技術および市場 Major Trends in Developing Wireless Smart Sensors Communications - Technologies and Markets
出版日: 2010年03月03日 ページ情報: 英文

当商品の販売は、2016年07月01日を持ちまして終了しました。

概要

当レポートでは、ワイヤレスセンサーネットワーク(WSN)のマーケティングおよび技術特徴について、特に、ワイヤレススマートセンサーの進化、メッシュコンフィギュレーション、IPベースのWSNおよびメンテナンスが不要なWSNネットワークの開発に着目して分析しており、概略下記の構成でお届けします。

第1章 イントロダクション

第2章 ワイヤレススマートセンサー技術

  • ワイヤレススマートセンサーの構造と機能性
  • 分類
  • 詳細
  • ネットワーキング
  • パラメーター
  • 規格:IEEE 1451
  • アプリケーション
  • 市場の特徴
  • スマートセンサーベンダー

第3章 メッシュネットワーク

  • 規格:IEEE 802.11s
  • 技術:メッシュネットワーク市場
  • 市場:メッシュネットワーク
  • 主なワイヤレスメッシュネットワークベンダーおよび製品

第4章 IPベースのWSN

  • 目標
  • ユビキタスセンサーネットワーク(USN)
  • IETF および IP/WSN
  • IP-USNの主な特徴
  • IPSOアライアンス(スマートオブジェクト向けIP)
  • USNアプリケーション

第5章 グリーンWSN

  • 方式
  • バッテリー
  • 環境発電技術

第6章 結論

付録?:USNアプリケーションのサンプル

図表

目次

This report continues Practel projects that analyze Wireless Sensors Networks (WSNs) marketing and technological characteristics. Particular, it emphasizes the following major trends in these networks developments:

Evolution to wireless smart sensors. Technologies allow now to build multi-purpose miniaturized devices with various radios. Smart sensors have enough computing power to process row data; and they consume very little energy. The report concentrates on the standardization work, technological advances and WSN marketing characteristics. A detailed survey of the industry is also included.

Mesh configuration. The mesh topology becomes a prevailing topology in the WSN environment. Military and commercial networks, small networks and large networks (with thousand nodes) are designed and implemented; these networks utilize benefits of meshing - self-organization and self-healing among them. The report details marketing and technological characteristics of meshed WSN, standardization efforts and provides the industry survey.

IP-based WSN. Benefitting from the IEEE, IETF, ITU and other standard organizations work, WSN evolving towards the IP environment; the goal is to put the power of IP technology even in such a small device as a smart sensor. The report analyzes such protocols as 6LoWPAN and ROLL, and shows that designers now have a choice to incorporate IP advances in WSN. The report also addresses Ubiquitous Sensor Network properties and benefits.

Maintenance-free WSN. WSN may reside in the harsh environment and though its deployment as any wireless infrastructure does not need any cabling, it still requires maintenance; this can be a difficult and expensive task mainly due to the necessity to periodically replace batteries in every sensor and/or radio. The report addresses features of power harvesting industry, which makes a significant progress towards the design and implementation of self-powered WSN nodes. This industry also contributes toward “Green ICT”, eliminating or significantly reducing pollutants from disposed batteries, which traditionally were one of the main sources of mercury and other harmful for people substances.

The survey of these industry vendors is included; and various power harvesting technologies are addressed.

Table of Contents

1.0 Introduction

  • 1.1 General
  • 1.2 Developments
  • 1.3 Scope
  • 1.4 Structure
  • 1.5 Research Methodology
  • 1.6 Target Audience

2.0 Wireless Smart Sensor Technology

  • 2.1 Wireless Smart Sensor Structure and Functionality
  • 2.2 Classification
  • 2.3 Details
    • 2.3.1 WSN-SS
    • 2.3.2 Requirements
  • 2.4 Networking
    • 2.4.1 Features of Mesh Structures
    • 2.4.2 Benefits and Limitations
  • 2.5 Parameters
  • 2.6 Standardization: IEEE 1451
    • 2.6.1 General
    • 2.6.2 Family
    • 2.6.3 Overview
  • 2.7 Applications
    • 2.7.1 General
    • 2.7.2 Applications Examples
  • 2.8 Market Characteristics
    • 2.8.1 General
    • 2.8.2 Market Estimate
    • 2.8.3 Trends
  • 2.9 SS Vendors
    • BAE Systems
    • BBN (RAYTHEON)
    • Crossbow (WSN)
    • Crane (WSN-ZigBee)
    • Dust Networks (USG-Mesh)
    • Elta (SS)
    • Exensor (SS)
    • Intel (Chipsets)
    • Freescale (sensors)
    • Harris (SS)
    • IWT (Mesh)
    • L3 (SS)
    • McQ (SS)
    • MeshDynamics (Mesh)
    • Millennial Net (Mesh-SS)
    • Moteiv-Sentilla (WSN)
    • MeshNetics-Atmel (WSN Software)
    • Newtrax (WSN-mesh, SS)
    • Nelco (SS)
    • NorthropGrumman (SS)
    • Octave Technologies (SW, WSN)
    • Qual-Tron (SS)
    • Rheinmetall (SS)
    • Selex Galileo (SS)
    • Sensicast (WSN)
    • Strix (Mesh)
    • Telonics
    • TextRon (SS)
    • Thales (SS)
    • Trident (SS-UWB)
    • Zeltech

3.0 Mesh Networks

  • 3.1 Standardization: IEEE 802.11s
    • 3.1.1 General
    • 3.1.2 IEEE 802.11s
    • 3.1.3 Major Proposals - History
  • 3.2 Technology: Mesh Networks Specifics
    • 3.2.1 Features
    • 3.2.2 Benefits and Limitations
    • 3.2.3 Architectures
    • 3.2.4 Routing Protocols
      • 3.2.4.1 Too Many
        • 3.2.4.1.1 Lack of Standardization
        • 3.2.4.1.2 Applications Variety
      • 3.2.4.2 Protocols
    • 3.2.5 Security Issues
      • 3.2.5.1 General
      • 3.2.5.2 IEEE 802.11
      • 3.2.5.3 UWB
      • 3.2.5.4 ZigBee/IEEE802.15.4
  • 3.3 Market: Mesh Networks
    • 3.3.1 Major Applications
    • 3.3.2 Market Estimate
      • 3.3.2.1 Market Leaders
      • 3.3.2.2 Forecast
  • 3.4 Major WMN Vendors and their Products
    • Atheros (chipsets)
    • Azalea
    • BelAir (Nodes)
    • Cisco (Protocols, Nodes)
    • Crossbow (nodes)
    • Dust Networks (WMN Nodes)
    • Ember (ZigBee chips for WMN)
    • Intel (Nodes)
    • IWT(Network Solution)
    • IPMobileNet (WMN)
    • FireTide (Mesh network-Public safety applications)
    • MeshDynamics (Nodes)
    • Millennial Net (SW and Systems)
    • Moteiv- Sentilla (Nodes and SW)
    • Mitre (protocols)
    • Motorola (Nodes-Public Safety Communications)
    • Newtrax (WSN-mesh, SS)
    • Northrop Grumman (Nodes)
    • NovaRoam (Public Safety Communications - WMN)
    • Octave Technologies (SW)
    • PacketHop (WMN SW)
    • Proxim (WMN Nodes)
    • Rajant (WMN-Military, First Responders)
    • Sensoria ( Tranzeo Divison-WMN for Public Safety Communications)
    • Sensicast (WMN for Industrial Automation)
    • Strix (Nodes)
    • Sirran (WMN)
    • Qorvus (WMN for IA)
    • Tropos-GridCom Tropos (routers)

4.0 IP-based WSN

  • 4.1 Goals
  • 4.2 Ubiquitous Sensor Network (USN)
    • 4.2.1 Definition
      • 4.2.1.1 Structure
    • 4.2.2 Task
    • 4.2.3 Comparison
    • 4.2.4 Standardization Activity
      • 4.2.4.1 ITU-T
      • 4.2.4.2 ISO
  • 4.3 IETF and IP/WSN
    • 4.3.1 Major Projects
      • 4.3.1.1 6LoWPAN WG
        • 4.3.1.1.1 6LoWPAN Development
        • 4.3.1.1.2 NanoStack
        • 4.3.1.1.3 Details
      • 4.3.1.2 ROLL WG
  • 4.4 Major Characteristics of IP-USN
  • 4.5 IPSO Alliance (IP for Smart Objects)
  • 4.6 USN Applications
    • 4.6.1 Climate Change
    • 4.6.2 Examples

5.0 Green WSN

  • 5.1 Methods
  • 5.2 Batteries
  • 5.3 Power Harvesting Technologies
    • 5.3.1 Energy Sources
    • 5.3.2 Green Technologies Requirements
    • 5.3.3 Self-powered Nodes
    • 5.3.4 Industry
    • 5.3.5 Vendors
      • Advanced Cerametrics
      • AmbioSystems
      • Ambient Micro
      • Arch Rock
      • Cymbet
      • EnOcean
        • General
        • Applications
        • Products Samples
        • EnOcean and EnOcean Alliance
      • Grape Networks
      • GreenPeak
      • GreyStone
      • JDL
      • Jennic
      • KCF
      • Micropelt
      • Nokia
      • Perpetuum
      • Perpetua
      • Powercast
      • Schneider Electric
      • Rittal
      • SensorDinamics
      • Sensinode
      • Sentilla
      • Spinwave
      • TI
      • Zarlink Semiconductor

6.0 Conclusions

Appendix I: USN Applications Samples

Figures

  • Figure 1: Two Groups
  • Figure 2: SS-Functions
  • Figure 3: SS Technologies
  • Figure 4: WSN-SS Node
  • Figure 5: TAM: Commercial Segment WSS Equipment Sale ($B)
  • Figure 6: TAM: Commercial Segment WSS Equipment Sale (M Units)
  • Figure 7: SS Market Geographical Segmentation
  • Figure 8: SS Network Sizing
  • Figure 9: Mesh Network Diagram
  • Figure 10: Meshed WLAN
  • Figure 11: WiMesh Stack
  • Figure 12: Mesh Network Equipment Sale: TAM Estimate ($B)
  • Figure 13: Mesh Network Radio Technologies
  • Figure 14: Radio Technology Segmentation: Mesh Network Market
  • Figure 15: Mesh Network Market Geography (2010)
  • Figure 16: Examples-USN Functions

Tables

  • Table 1: SS Node-Price Components
  • Table 2: IEEE 802.11s WG Schedule
  • Table 3: Sources
Back to Top