表紙:スマートグリッド開発におけるICTの役割 - 技術、規格、市場
市場調査レポート
商品コード
1167087

スマートグリッド開発におけるICTの役割 - 技術、規格、市場

ICT Role in Smart Grid Development - Technologies, Standards, Markets

出版日: | 発行: PracTel, Inc. | ページ情報: 英文 210 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.76円
スマートグリッド開発におけるICTの役割 - 技術、規格、市場
出版日: 2022年11月30日
発行: PracTel, Inc.
ページ情報: 英文 210 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

スマートエネルギーやスマートグリッド(SG)のコンセプトは、エネルギーの生産・供給・使用を最適化することを目的に、家庭やオフィスなどの内部と、家庭から外部の接続機器、ネットワーク、スマートグリッド自体へのエネルギー消費を制御することです。ホームネットワークと電力網の双方向通信により、エネルギー消費の削減だけでなく、信頼性や持続可能性の向上にもつながる可能性を秘めています。

当レポートでは、スマートグリッド開発におけるICTの役割について調査分析し、無線・有線の両技術を対象に、さまざまな技術の利点や問題点、従来型の技術、新しいセルラー技術、SG ICTの開発や規格などについて、最新の情報を提供しています。

目次

第1章 イントロダクション

第2章 全般:SG ICT業界の活動

  • 主な組織 - 機能
  • 構造
    • SGレイヤー
    • ETSIサブネットワークアーキテクチャ
  • 要件:SGネットワーキング
    • 見解:SG ICTレイヤー
  • 業界・ユーザーグループのプロジェクト
    • ETSI
    • IEC
    • IEEE
    • Global Intelligent Utility Network Coalition
    • Smart Networks Council(SNC)
    • U-SNAP Alliance
    • ESMIG
    • Demand Response and Smart Grid Coalition(DRSG)
    • EPRI(Electrical Power Research Institute)
    • ZigBee and Wi-Fi Alliances
    • NIST
    • OpenHAN
    • Federal Smart Grid Task Force
    • Open Smart Grid Users Group(OSGUG)
    • ITU
    • OpenADR
    • コメント

第3章 SG ICTとスマートメーター

  • 機能と構造:SG ICT
  • 現在の状態
  • 現在の目標
  • 選択肢
  • スマートメーター
    • 目的
    • 詳細
    • 機能
    • コンポーネント
  • セキュリティ
    • AMI Security Task Force
    • NIST Contributions
  • 市場
    • 市場促進要因
    • 市場予測:スマートメーター
  • 業界
  • Aclara(ソフトウェア・システム、BPL)
  • Aeris(ワイヤレスネットワークプロバイダー)
  • Connected Energy(ソフトウェアプラットフォーム)
  • Carlson Wireless(無線プラットフォーム)
  • Cisco(IPベースインフラ)
  • Eaton(Cooper Power Systems)
  • GridPoint(ネットワークプラットフォーム)
  • Honeywell(コネクティビティ、SM)
  • Itron(インテリジェントメータリング)
  • Nokia(インフラ)
  • Oracle(ソフトウェア)
  • Landis+Gyr(メータリングデバイス)
  • Sensus(データ収集・計測)
  • Siemens(ソフトウェア、ハードウェア)
  • Spinwave(ビルディング制御、HAN)
  • Tantalus(ネットワーキング・デバイス)
  • TransData(ワイヤレスAMI/AMRメーター)
  • TI
  • Trilliant(インテリジェントメータリング)
  • Uplight

第4章 主要な規格と技術:SG ICT

  • IEEE
    • IEEE 2030
    • IEEE 1901-2020
    • 802.15.4g - スマートユーティリティネットワーク
    • コグニティブ無線:IEEE 802.22
  • 3GPP LTE・SG
    • 3GPP
    • LTEの目的
    • LTEの主な機能
    • 利点
    • 市場
    • 業界
      • Bittium
      • Cisco
      • CommAgility
      • Ericsson
      • Fujitsu
      • Huawei
      • Motorola Solutions
      • Nokia
      • Qualcomm
      • Sequans
      • TI
      • u-blox
      • ZTE
    • スマートグリッド開発におけるLTEの役割
  • 有線ICT - SG
    • IEEE 1901.2

第5章 IoT技術とSG

  • Weightless技術
    • Weightless Alliance
    • 共通の機能
    • Weightless-W
    • 変更点
    • Weightless-N
    • Weightless-P
    • Weightless技術の比較
  • RPMA
    • 主な機能
    • 拡張
    • コンポーネントと構造
    • ユースケース
  • LoRa
    • アライアンス
    • 技術の構成要素
    • 業界
      • Actility
      • Advantech
      • Cisco
      • Embit
      • LORIOT.io
      • Microchip Technology
      • MultiTech
      • Murata
      • Sagemcom
      • Semtech
      • STMicroelectronics
      • Tektelic
  • SigFox
    • 企業
    • 技術 - 詳細
    • カバレッジ
    • ユースケース
    • 業界
      • Adeunis RF
      • Innocomm
      • Microchip
      • On Semiconductor
      • Telit
      • TI
  • G3-PLCハイブリッドとSG

第6章 結論

付録I:IEEE 802.15.4gの特徴

付録II:規則 - TVWS

付録III:802.22関連特許の調査(2018年~2022年)

付録IV:SigFox関連特許の調査(2018年~2022年)

付録V:LoRa関連特許の調査(2018年~2022年)

図表

List of Figures

  • Figure 1: Smart Grid Networking
  • Figure 2: SG Developmental Stages
  • Figure 3: U.S. SG - NIST Conceptual Model
  • Figure 4: U.S. - Smart Meters Installed (Mil)
  • Figure 5: GB - Number of SM Installed
  • Figure 6: Organizations
  • Figure 7: Smart Grid and ICT
  • Figure 8: "Smart" Support Network
  • Figure 9: Smart Grid - Layered Structure
  • Figure 10: ETSI-SG Layers
  • Figure 11: SG Networks Requirements
  • Figure 12: Layered Hierarchy - SG/ICT Standards
  • Figure 13: ETSI Documents
  • Figure 14: Interoperability Framework
  • Figure 15: SG - ICT Infrastructure
  • Figure 16: Smart Grid Connectivity
  • Figure 17: Estimate: Electrical SM Global Market ($B)
  • Figure 18: Estimate: Electrical SM Global Market (Mil. Units)
  • Figure 19: SG ICT Market Components
  • Figure 20: U.S. - SMs Geography - Penetration (2013-2017)
  • Figure 21: IEEE 2030 Group
  • Figure 22: SUN Place
  • Figure 23: Major Characteristics: IEEE 802.22
  • Figure 24: IEEE 802.22 Network: Usage Scenarios
  • Figure 25: 3GPP Releases
  • Figure 26: Major LTE Characteristics - R.8.0
  • Figure 27: LTE Frequency Bands (original assignment)
  • Figure 28: LTE - IP
  • Figure 29: Release 8 Users Equipment Categories
  • Figure 30: LTE Subscribers (Bil.)
  • Figure 31: Estimate- LTE Equipment Global Sales ($B)
  • Figure 32: "NarrowBand" LTE
  • Figure 33: Rel. 12 Category 1/0 - SG
  • Figure 34: LTE for Low Complexity UE
  • Figure 35: IoT Communications Technologies Compared
  • Figure 36: Global Regulations
  • Figure 37: Rates of Transmission
  • Figure 38: PRIME Benefits
  • Figure 39: Layers - Prime
  • Figure 40: Weightless Protocol Stack
  • Figure 41: Iceni Characteristics
  • Figure 42: Weightless Technologies Comparison
  • Figure 43: RPMA Use Cases
  • Figure 44: LoRa Protocol Architecture
  • Figure 45: LoRa Architecture
  • Figure 46: LoRa Classes
  • Figure 47: Battery Lifetime
  • Figure 48: Regional Differences
  • Figure 49: Uplink Frame Format
  • Figure 50: Downlink Frame Format
目次

The concept behind smart energy and Smart Grid (SG) is controlling energy consumption internally, within the home, office and similar; and externally from the home to outside connected devices, networks, and the smart grid itself - all with the goal of optimizing energy production, distribution, and usage. Bi-directional communication between home networks and the power grid opens up possibilities for improved reliability and sustainability as well as reducing the energy consumption.

This report presents the in-depth analysis of Information and Communications Technologies (ICT) for the Smart Grid.

Both wireless and wireline communications technologies are considered. Designers of SG networks have multiple choices; and the report presents the comparison of various technologies with their benefits and issues.

In addition to "traditional" technologies, such as 802.15.4g and 802.22, the report concentrates on newer cellular technologies, such as LTE for low-powered and low- speed UEs. It also analyzes a group of IoT technologies that support SG connectivity (such as SigFox, LoRa, Weightless and RPMA).

The detailed survey of organizations that are involved in SG ICT development and standardization is also presented together with the survey of the industry. Marketing statistics also have been developed and included in the report.

This report is useful to a wide audience of technical, managerial and sale staff involved in the SG ICT development and implementation.

Table of Contents

1.0. Introduction

  • 1.1. General
    • 1.1.1. Smart Grid Definition
  • 1.2. Issues
  • 1.3. Vision: SG ICT
    • 1.3.1. Neural Grid
  • 1.4. U.S.
    • 1.4.1. Objectives
    • 1.4.2. Statistics
    • 1.4.3. Conceptual Model
    • 1.4.4. Plans and Current Situation
  • 1.5. England
  • 1.6. Italy
  • 1.7. China
  • 1.8. Scope
  • 1.9. Research Methodology
  • 1.10. Target Audience

2.0. General: SG ICT Industry Activities

  • 2.1. Main Organizations - Functionalities
  • 2.2. Structure
    • 2.2.1. SG Layers
      • 2.2.1.1. ETSI Layering
    • 2.2.2. ETSI Subnetworks Architecture
  • 2.3. Requirements: SG Networking
    • 2.3.1. View: SG ICT Layers
  • 2.4. Industry and User Groups Projects
    • 2.4.1. ETSI
      • 2.4.1.1. Major Items
      • 2.4.1.2. M490
      • 2.4.1.3. ETSI Documents
    • 2.4.2. IEC
    • 2.4.3. IEEE
    • 2.4.4. Global Intelligent Utility Network Coalition
    • 2.4.5. Smart Networks Council (SNC)
    • 2.4.6. U-SNAP Alliance
      • 2.4.6.1. Specification and HAN
      • 2.4.6.2. Merge
      • 2.4.6.3. Further Development
    • 2.4.7. ESMIG
    • 2.4.8. Demand Response and Smart Grid Coalition (DRSG)
    • 2.4.9. EPRI (Electrical Power Research Institute)
    • 2.4.10. ZigBee and Wi-Fi Alliances
    • 2.4.11. NIST
    • 2.4.12. OpenHAN
    • 2.4.13. Federal Smart Grid Task Force
    • 2.4.14. Open Smart Grid Users Group (OSGUG)
    • 2.4.15. ITU
    • 2.4.16. OpenADR
    • 2.4.17. Comments

3.0. SG ICT and Smart Meters

  • 3.1. Function and Structure: SG ICT
  • 3.2. Current Status
  • 3.3. Current Objectives
  • 3.4. Choices
  • 3.5. Smart Meters
    • 3.5.1. Objectives
    • 3.5.2. Details
    • 3.5.3. Functions
    • 3.5.4. Components
      • 3.5.4.1. Communications
  • 3.6. Security
    • 3.6.1. AMI Security Task Force
    • 3.6.2. NIST Contributions
  • 3.7. Market
    • 3.7.1. Market Drivers
    • 3.7.2. Market Projections: Smart Meters
  • 3.8. Industry
  • Aclara (Software and Systems, BPL)
  • Aeris (Wireless Network Provider)
  • Connected Energy (Software Platform)
  • Carlson Wireless (Radio Platforms)
  • Cisco (IP-based Infrastructure)
  • Eaton (Cooper Power Systems)
  • GridPoint (Network Platform)
  • Honeywell (Connectivity, SM)
  • Itron (Intelligent Metering)
  • Nokia (Infrastructure)
  • Oracle (Software)
  • Landis+Gyr (Metering Devices)
  • Sensus (Data Collection and Metering)
  • Siemens (Software, Hardware)
  • Spinwave (Building Control, HAN)
  • Tantalus (Networking and Devices)
  • TransData (Wireless AMI/AMR Meter)
  • TI
  • Trilliant (Intelligent Metering)
  • Uplight

4.0. Major Standards and Technologies: SG ICT

  • 4.1. IEEE
    • 4.1.1. IEEE 2030
      • 4.1.1.1. Scope
      • 4.1.1.2. Purpose
    • 4.1.2. IEEE 1901-2020
    • 4.1.3. 802.15.4g-Smart Utility Networks
      • 4.1.3.1. General
      • 4.1.3.2. Purpose
      • 4.1.3.3. Need
      • 4.1.3.4. Value
      • 4.1.3.5. Overview - PHY
      • 4.1.3.6. Regions
        • 4.1.3.6.1. Frequencies Allocations
      • 4.1.3.7. Details
        • 4.1.3.7.1. Requirements: Major Characteristics
        • 4.1.3.7.2. Considerations
        • 4.1.3.7.3. PHY/MAC Modifications
      • 4.1.3.8. Summary
      • 4.1.3.9. Wi-SUN
    • 4.1.4. Cognitive Radio: IEEE 802.22
      • 4.1.4.1. General
      • 4.1.4.2. Group
        • 4.1.4.2.1. IEEE 802.22
          • 4.1.4.2.1.1. 802.22-2011
          • 4.1.4.2.1.2. 802.22-2019
        • 4.1.4.2.2. IEEE 802.22.1
        • 4.1.4.2.3. IEEE 802.22.2-2012
        • 4.1.4.2.4. IEEE 802.22a-2014
        • 4.1.4.2.5. IEEE 802.22b-2015
      • 4.1.4.3. Developments
      • 4.1.4.4. IEEE 802.22 Overview
      • 4.1.4.5. Major Characteristics-802.22
      • 4.1.4.6. IEEE 802.22 Details
        • 4.1.4.6.1. Physical Layer-Major Characteristics
        • 4.1.4.6.2. MAC Layer
      • 4.1.4.7. Cognitive Functions
      • 4.1.4.8. IEEE 802.22-Marketing Considerations
      • 4.1.4.9. Major Applications
      • 4.1.4.10. Summary
      • 4.1.4.11. 802.22 and Smart Grid
      • 4.1.4.12. Usage Models
      • 4.1.4.13. Benefits
  • 4.2. 3GPP LTE and SG
    • 4.2.1. 3GPP
    • 4.2.2. LTE Objectives
    • 4.2.3. Key Features of LTE
      • 4.2.3.1. Evolved Packet Core (EPC)
      • 4.2.3.2. LTE Advanced
    • 4.2.4. Benefits
    • 4.2.5. Market
      • 4.2.5.1. Drivers
      • 4.2.5.2. LTE Market Projections
    • 4.2.6. Industry
      • 4.2.6.1. Trends
      • 4.2.6.2. Vendors
        • Bittium
        • Cisco
        • CommAgility
        • Ericsson
        • Fujitsu
        • Huawei
        • Motorola Solutions
        • Nokia
        • Qualcomm
        • Sequans
        • TI
        • u-blox
        • ZTE
    • 4.2.7. Role of LTE in Smart Grid Development
      • 4.2.7.1. General
      • 4.2.7.2. Examples
        • 4.2.7.2.1. Ericsson
        • 4.2.7.2.2. Cisco
        • 4.2.7.2.3. Nokia and Tantalus
      • 4.2.7.3. Details
        • 4.2.7.3.1. Scalable LTE IoT Platform and SG
        • 4.2.7.3.2. Smart Metering Specifics - LTE
          • 4.2.7.3.2.1. Choices
          • 4.2.7.3.2.2. Reasons
      • 4.2.7.4. Summary
  • 4.3. Wireline ICT - SG
    • 4.3.1. IEEE 1901.2
      • 4.3.1.1. Choices - ITU
        • 4.3.1.1.1. G3 PLC
          • 4.3.1.1.1.1. Maxim-G3 PLC
          • 4.3.1.1.1.2. G3 PLC Alliance
          • 4.3.1.1.1.3. Approval
          • 4.3.1.1.1.4. Details
            • 4.3.1.1.1.4.1. PHY Layer
            • 4.3.1.1.1.4.2. MAC Layer
            • 4.3.1.1.1.4.3. Network and Transport Layers
            • 4.3.1.1.1.4.4. Application Layer
        • 4.3.1.1.2. PRIME
          • 4.3.1.1.2.1. PRIME Alliance
          • 4.3.1.1.2.2. Benefits
          • 4.3.1.1.2.3. Specification
          • 4.3.1.1.2.4. PRIME Industry

5.0. IoT Technologies and SG

  • 5.1. Weightless Technologies
    • 5.1.1. Weightless Alliance
    • 5.1.2. Common Features
      • 5.1.2.1. Protocol Details
    • 5.1.3. Weightless-W
      • 5.1.3.1. White Spaces Communications - Principles
      • 5.1.3.2. Definition
      • 5.1.3.3. Rational
        • 5.1.3.3.1. Ecosystem and Use Cases
        • 5.1.3.3.2. Weightless-W Details
    • 5.1.4. Changes
    • 5.1.5. Weightless-N
      • 5.1.5.1. General
      • 5.1.5.2. Open Standard
      • 5.1.5.3. Nwave
        • 5.1.5.3.1. NWave-Current Position
    • 5.1.6. Weightless-P
      • 5.1.6.1. General
      • 5.1.6.2. Details
    • 5.1.7. Comparison of Weightless Technologies
    • 5.1.8. Example
  • 5.2. RPMA
    • 5.2.1. Major Features
    • 5.2.2. Expansion
    • 5.2.3. Components and Structure
    • 5.2.4. Use Cases
  • 5.3. LoRa
    • 5.3.1. Alliance
      • 5.3.1.1. Open Protocol
    • 5.3.2. Technology Building Blocks
      • 5.3.2.1. Layered Structure
      • 5.3.2.2. Modulation
      • 5.3.2.3. Long Range
      • 5.3.2.4. Applications
      • 5.3.2.5. Network Architecture
      • 5.3.2.6. Classes
      • 5.3.2.7. LoRaWAN
      • 5.3.2.8. Major Characteristics
    • 5.3.3. Industry
      • Actility
      • Advantech
      • Cisco
      • Embit
      • LORIOT.io
      • Microchip Technology
      • MultiTech
      • Murata
      • Sagemcom
      • Semtech
      • STMicroelectronics
      • Tektelic
  • 5.4. SigFox
    • 5.4.1. Company
    • 5.4.2. Technology - Details
      • 5.4.2.1. Uplink
      • 5.4.2.2. Downlink
      • 5.4.2.3. SmartLNB
    • 5.4.3. Coverage
    • 5.4.4. Use Cases
    • 5.4.5. Industry
      • Adeunis RF
      • Innocomm
      • Microchip
      • On Semiconductor
      • Telit
      • TI
  • 5.5. The G3-PLC Hybrid and SG

6.0. Conclusions

Appendix I: IEEE802.15.4g Characteristics

Appendix II: Regulations - TVWS

Appendix III: Survey of 802.22-related Patents (2018-2022)

Appendix IV: Survey of SigFox-related Patents (2018-2022)

Appendix V: Survey of LoRa-related Patents (2018-2022)