表紙:MIMOによる通信強化- 技術、市場、用途
市場調査レポート
商品コード
1304602

MIMOによる通信強化- 技術、市場、用途

Enhancing Communications with MIMO - Technologies, Markets and Applications

出版日: | 発行: PracTel, Inc. | ページ情報: 英文 183 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.76円
MIMOによる通信強化- 技術、市場、用途
出版日: 2023年06月29日
発行: PracTel, Inc.
ページ情報: 英文 183 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、MIMO(Multiple Input/Multiple Output:複数入力/複数出力)構造によって性能を向上させる無線/有線通信システムの先端技術と市場について調査しています。

目次

第1章 イントロダクション

第2章 MIMO-概念、機能、および種類

  • 歴史
  • コンセプト
  • MIMOの種類:例
  • MIMOの利点(ワイヤレスシステム)

第3章 無線システムにおけるMIMO

  • LTEの開発とMIMO
    • リリース-3GPP
    • LTEタイムテーブル
    • ブロードバンドモバイル通信-フェーズ
    • LTEの標準化と業界連携
    • 業界のイニシアチブ
    • 知的財産
    • LTEの主な特徴
    • 詳細
    • LTEアドバンスト
    • SON
    • 音声サポート
    • 市場
    • 概要:LTEのメリット
    • 業界
    • 詳細:LTE MIMO
    • 5G NRとMIMO
    • Wi-Fi 6以上- 超高スループットWi-Fi-802.11be
  • 802.11ac開発におけるMIMOの役割
  • 802.11ayとMIMOテクノロジー

第4章 有線通信におけるMIMO

  • HomePNAおよびITU MIMOベースの技術
  • HomePlugAV2-mimo

第5章 結論

添付資料I:特許調査LTE-MIMO(2018年~2020年)

添付資料II:特許調査-802.11ac MIMO(2018年~2020年)

添付資料III:特許調査-802.11ax MIMO(2018年~2020年)

添付資料IV:特許調査-802.11ay MIMO(2018年~2020年)

添付資料V:特許調査-G.hn-MIMO(2014年~2020年)

目次

This report researches advanced technologies and markets for wireless and wired communications systems that are supported by MIMO - Multiple Input/Multiple Output structures - to enhance their performance. It revises and updates earlier issues of the report as well as adds the analysis of latest technologies.

Users' demand for more efficient networking brought to life many technological innovations. One of them is MIMO, which became very popular in wireless systems - almost all recent and future 3GPP standards use (or will be using) variations of such a technique. MIMO is also used in wireline systems.

This report is based on the Practel analysis of MIMO-based communications systems, their technologies and markets specifics. Particular, the following industry standards that utilize MIMO have been considered:

  • 3GPP LTE
  • IEEE802.11ax
  • IEEE802.11ay
  • IEEE 802.11ac
  • HomePlug AV2
  • ITU G.hn - MIMO.

The goal of this report is to characterize MIMO advantages and specifics for each standard. It also addresses market characteristics of discussed technologies. Report concentrates on profiling the industry players and their products.

MIMO characteristics, structures and types are also addressed and compared. The report also surveys patents related to the discussed subjects.

The report is written for a wide audience of managers and technical staff who are involved in the design and implementation of advanced communications systems.

Table of Contents

1.0. Introduction

  • 1.1. General
  • 1.2. Goal
  • 1.3. Structure
  • 1.4. Research Methodology
  • 1.5. Target Audience

2.0. MIMO - Concept, Functions and Types

  • 2.1. History
  • 2.2. Concept
  • 2.3. Types of MIMO: Examples
    • 2.3.1. CoMP MIMO
    • 2.3.2. Massive MIMO
    • 2.3.3. MU-MIMO
    • 2.3.4. MIMO-OFDM
    • 2.3.5. Mobile Networked MIMO
    • 2.3.6. MIMO - by Type of Communications Media
    • 2.3.7. Summary
  • 2.4. MIMO Benefits (Wireless Systems)

3.0. MIMO in Wireless Systems

  • 3.1. LTE Development and MIMO
    • 3.1.1. Releases - 3GPP
    • 3.1.2. LTE Timetable
    • 3.1.3. Broadband Mobile Communications-Phases
    • 3.1.4. LTE Standardization-Industry Collaboration
    • 3.1.5. Industry Initiative
    • 3.1.6. Intellectual Property
    • 3.1.7. Key Features of LTE
    • 3.1.8. Details
      • 3.1.8.1. Evolved UMTS Radio Access Network (EUTRAN)
      • 3.1.8.2. UE Categories
      • 3.1.8.3. Evolved Packet Core (EPC)
    • 3.1.9. LTE Advanced
    • 3.1.10. SON
    • 3.1.11. Voice Support
      • 3.1.11.1. VoLTE
    • 3.1.12. Market
      • 3.1.12.1. Drivers
      • 3.1.12.2. Demand: Wireless Broadband
      • 3.1.12.3. LTE Market Projections
    • 3.1.13. Summary: LTE Benefits
    • 3.1.14. Industry
      • Altair Semiconductor (a Sony Group Company)
      • Aricent (now Altran)
      • AceAxis
      • Cisco
      • CommAgility
      • Ericsson
      • Fujitsu
      • Huawei
      • Lime Microsystems
      • Motorola Solutions
      • Nokia
      • Qualcomm
      • Samsung
      • Sequans
      • Signalion
      • TI
      • U-blox
      • ZTE
    • 3.1.15. Specifics: LTE MIMO
      • 3.1.15.1. Techniques
      • 3.1.15.2. Major Applications
      • 3.1.15.3. Modes
      • 3.1.15.4. MIMO: LTE Release 8
      • 3.1.15.5. MIMO: LTE Release 9
      • 3.1.15.6. MIMO: LTE Advanced and Further Developments
      • 3.1.15.7. LTE/LTE-A - MIMO Benefits
      • 3.1.15.8. Market Projections
    • 3.1.16. 5G NR and MIMO
  • 3.2. IEEE802.11ax (Wi-Fi 6) and MIMO
    • 3.2.1. Background
    • 3.2.2. Focal Points
    • 3.2.3. Major Features
    • 3.2.4. Major Applications
    • 3.2.5. Physical Layer
      • 3.2.5.1. Multi-User Operation
      • 3.2.5.2. Role of MU-MIMO
      • 3.2.5.3. Multi-User OFDMA
    • 3.2.6. MAC
      • 3.2.6.1. Spatial Reuse with Color Codes
      • 3.2.6.2. Power-saving with Target Wake Time
      • 3.2.6.3. Density
    • 3.2.7. 802.11ax Operating Modes
      • 3.2.7.1. MU-MIMO (Wi-Fi 6 / 802.11ax)
    • 3.2.8. Industry
      • Aerohive (Extreme Networks)
      • Asus
      • Broadcom
      • Huawei
      • Marvell
      • Netgear
      • Ruckus
      • Quantenna (acquired by On Semiconductor in 2019)
      • Qualcomm
    • 3.2.9. Beyond Wi-Fi 6 - Extreme High Throughput Wi-Fi - 802.11be
  • 3.3. MIMO Role in 802.11ac Development
    • 3.3.1. General - Improving 802.11n Characteristics
    • 3.3.2. Approval
    • 3.3.3. Major Features: Summary
    • 3.3.4. Major Benefits
    • 3.3.5. Usage Models
    • 3.3.6. Waves
    • 3.3.7. Market Projections
    • 3.3.8. Industry
      • Aruba - HP
      • Celeno
      • Broadcom
      • Buffalo
      • Cisco
      • D-Link
      • Fortinet
      • Linksys
      • Marvell
      • Netgear
      • Qualcomm
      • Quantenna (acquired by On Semiconductor in 2019)
      • Redpine Signals
    • 3.3.9. MIMO and 802.11ac Standard
      • 3.3.9.1. Comparison
  • 3.4. 802.11ay and MIMO Technology
    • 3.4.1. Timetable
    • 3.4.2. Scope
    • 3.4.3. Need
    • 3.4.4. Usage Cases (Examples)
    • 3.4.5. Expected Characteristics
    • 3.4.6. MIMO - Preliminary View

4.0. MIMO in Wireline Communications

  • 4.1. HomePNA and ITU MIMO-based Technologies
    • 4.1.1. HomeGrid Forum
      • 4.1.1.1. Specifications
        • 4.1.1.1.1. Background
        • 4.1.1.1.2. HomePNA Specification 3.1: Major Features
        • 4.1.1.1.3. Fast EoC HomePNA
      • 4.1.1.2. Major Benefits
    • 4.1.2. ITU G.hn
      • 4.1.2.1. General
      • 4.1.2.2. G.hn Details
        • 4.1.2.2.1. Differences
        • 4.1.2.2.2. Common Features
      • 4.1.2.3. Acceptance
      • 4.1.2.4. HomePNA and G.hn Documents
      • 4.1.2.5. G.hn-mimo - G.9963
        • 4.1.2.5.1. Drivers
        • 4.1.2.5.2. G.9963 Details
          • 4.1.2.5.2.1. General
          • 4.1.2.5.2.2. Wireline Specifics - G.hn-mimo
          • 4.1.2.5.2.3. Scope
          • 4.1.2.5.2.4. Performance
      • 4.1.2.6. Industry
        • Comtrend
        • Cambridge Industries Group (CIG)
        • Marvell
        • MaxLinear/devolo
        • ST&T
        • Xingtera
  • 4.2. HomePlugAV2-mimo
    • 4.2.1. General
      • 4.2.1.1. Certification
    • 4.2.2. Major Improvements
    • 4.2.3. Specification Details
      • 4.2.3.1. MIMO Mechanism
    • 4.2.4. Industry
      • Aztech
      • Broadcom
      • D-Link
      • Extollo
      • Gigafast Ethernet
      • Intersil (acquired by Renesas in 2017)
      • Lea Networks
      • Sineoji
      • Trendnet
      • TP-Link
      • Qualcomm Atheros
      • Zyxel

5.0. Conclusions

Attachment I: Patents Survey LTE - MIMO (2018-2020)

Attachment II: Patents Survey - 802.11ac MIMO (2018-2020)

Attachment III: Patents Survey - 802.11ax MIMO (2018-2020)

Attachment IV: Patents Survey - 802.11ay MIMO (2018-2020)

Attachment V: Patents Survey - G.hn-MIMO (2014-2020)