表紙:持続可能な軟包装の未来(2026年まで)
市場調査レポート
商品コード
1014545

持続可能な軟包装の未来(2026年まで)

The Future of Sustainable Flexible Packaging to 2026

出版日: | 発行: Smithers | ページ情報: 英文 159 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=110.22円
持続可能な軟包装の未来(2026年まで)
出版日: 2021年06月17日
発行: Smithers
ページ情報: 英文 159 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

2021年現在、多くの先進国では軟包装材の廃棄物の分別収集が重要な課題となっていますが、2026年には再生材の使用が拡大すると予想されています。世論の圧力や法的措置により、軟包装のサプライチェーン全体に変化がもたらされており、特に、より持続可能な包装デザインの開発が求められています。

本レポートでは、持続可能な軟包装について調査しています。軟包装の環境プロファイルを改善するためにサプライチェーンが採用している具体的な戦略を検証・比較に重点を置き、材料や技術別の動向分析、成長要因、現在の取組みや課題などの情報を提供しています。

目次

エグゼクティブサマリー

  • 概要
  • 持続可能な包装開発戦略
    • 軟包装の軽量化
    • リサイクル可能な軟包装
    • 再利用可能な軟包装
    • リサイクルされたコンテンツを軟包装に
    • 軟包装のための持続可能な調達材料
    • 生分解性の軟包装
    • 軟包装のための廃棄物管理インフラストラクチャ
    • 新興諸国
    • 先進国
  • 持続可能な軟包装のための材料の考慮事項

イントロダクションと調査手法

  • イントロダクション
  • 目的
  • 範囲
  • 調査手法
  • 定義
    • 略語
    • 法的枠組みに関連する定義
    • 技術的な定義
    • 技術的な略語

「持続可能な軟包装」の定義

  • イントロダクション
  • 軟包装
    • 定義
    • 軟包装形態と種類の例
    • 軟包装に使用される材料と構造
    • 材料
    • 構造
  • 持続可能な包装の定義
  • より持続可能な包装を推進する要因
    • 世論の圧力
    • 立法
    • 包装設計に対するEU立法の影響
    • 包装課税とEPRに対するEU立法の影響
    • 廃棄物管理に対するEU立法の影響
  • 持続可能な包装開発戦略
    • 定義と世界の適用性
    • 減らす
    • 「リサイクル可能」
    • 再利用
    • リサイクルされたコンテンツ
    • 持続可能な方法で調達された材料
    • 生分解性
    • 廃棄物管理インフラの開発
  • 軟包装機能のニーズ
    • 製品保護
    • 消費者の相互作用
    • 簡単開封
    • 再閉封
    • 製品の調剤
    • 電子レンジ対応/オーブン対応
    • チャイルドレジスタンス(CR)
    • 包装の製造とフォーマット
    • 包装プロセス
    • 材料の輸送、成形、切断
    • シーリング
    • レトルト能力
    • 調整雰囲気パッキング(MAP)
    • 発送
    • 見栄え
    • 財務
    • 規制上のニーズ
    • 持続可能性

軽量化/軽量化された軟包装

  • イントロダクション
  • ダウンゲージ
  • 硬質から軟質への変換
  • 詰め替え包装
  • 製品濃度
  • 結論

「リサイクル可能な」軟包装

  • イントロダクション
  • 「リサイクル可能な」包装の定義
  • リサイクル可能な軟包装:現在の取り組み
  • リサイクル可能な軟包装:機能の課題
  • プラスチックから紙への変換
  • 結論

再利用可能な軟包装

  • イントロダクション
  • 店内詰め替え
    • 硬包装
    • 軟包装
  • 自宅での詰め替え
  • 結論

リサイクルされたコンテンツによる軟包装

  • イントロダクション
  • 軟包装のためのリサイクル材料の供給源
    • LDPE
    • HDPE
    • PET
    • PP
    • ナイロン
  • 結論

軟包装のための持続可能性源の材料

  • イントロダクション
  • 持続可能な方法で調達されたプラスチック
  • 結論

生分解性の軟包装

  • イントロダクション
  • 立法の見通し
  • 生分解性の軟包装用プラスチック
  • 結論

軟包装の廃棄物管理インフラストラクチャの開発

  • イントロダクション
  • 新興諸国
  • 先進国
    • 軟包装廃棄物の収集の改善
    • 廃棄物管理と材料回収の改善
  • 軟包装のその他の開発
    • Retain(TM)
    • Enval
    • Cadelの脱墨
    • Eremaの脱臭
    • saperatecの層分離
  • コンソーシアム活動
  • 結論

持続可能な軟包装の材料

  • イントロダクション
  • LDPE
    • 軽量化
    • リサイクル性
    • リサイクルされたコンテンツ
    • 持続可能な調達
    • 廃棄物管理インフラ
  • PP
    • 軽量化
    • リサイクル性
    • リサイクルされたコンテンツ
    • 持続可能な調達
    • 廃棄物管理インフラ
  • PET
    • 軽量化
    • リサイクル性
    • リサイクルされたコンテンツ
    • 持続可能な調達
    • 廃棄物管理インフラ
    • リサイクル性
    • 持続可能な調達
    • 生分解性
  • アルミ
    • リサイクル性
    • 廃棄物管理
  • ナイロン
    • リサイクル性
    • 廃棄物管理
  • EVOH
    • 軽量化とリサイクル性
  • PVdC
    • 軽量化とリサイクル性
  • PVC
  • 生分解性プラスチック
    • 生分解性と循環性の比較
図表

LIST OF FIGURES

  • FIGURE 2.1. PE based mono-film for paper-based products
  • FIGURE 2.2. Medium barrier laminate for stand-up pouches
  • FIGURE 2.3. High barrier laminate for wet pet-food pouches
  • FIGURE 2.4. High barrier thermoformable film for vacuum packs
  • FIGURE 2.5. The top 10 country list of plastic pollution by weight plus other selected countries for both mismanaged waste and marine litter
  • FIGURE 2.6. Percentage of plastic waste that is mismanaged per country in 2010.
  • FIGURE 2.7. Sources of plastic marine litter
  • FIGURE 2.8. An overview of EU climate regulations from 2015 to 2025, with implications for package design
  • FIGURE 2.9. The EU Waste Hierarchy, and details of liner vs. circular economy approach
  • FIGURE 2.10. A pictorial representation of future EPR plans based on layers of different EPR charges
  • FIGURE 3.1 - The EU's Waste Hierarchy and how the linear and circular economy fit into this hirearchy
  • FIGURE 4.1 - Tesco's preferred packaging material list
  • FIGURE 4.1. A technical assessment of the suitability of various commercially available recyclable films options to replace a PET/LDPE laminate
  • FIGURE 4.2. A technical assessment of the suitability of various commercially available recyclable films options to replace a PET/Alu/LDPE laminate
  • FIGURE 6.1. The composition of the UK flexible packaging household waste stream in 2016
  • FIGURE 6.2. A breakdown of the main flexible packaging formats in the UK household waste stream in 2016
  • FIGURE 8.1. An overview of global production capacity of bioplastics
  • FIGURE 8.2. A technical assessment of the suitability of various commercially available biodegradable films options to replace a PET/LDPE laminate
  • FIGURE 8.3. A technical assessment of the suitability of various commercially available recyclable films options to replace a PET/Alu/LDPE laminate
  • FIGURE 9.1. The top 10 country list of plastic pollution by weight plus other selected countries for both mismanaged waste and marine litter
  • FIGURE 10.1. The composition of the UK flexible packaging household waste stream in 2016
  • FIGURE 10.2. A breakdown of the main flexible packaging formats in the UK household waste stream in 2016
  • FIGURE 10.3. A technical assessment of the suitability of various commercially available biodegradable films options to replace a PET/LDPE laminate
  • FIGURE 10.4. A technical assessment of the suitability of various commercially available recyclable films options to replace a PET/Alu/LDPE laminate

LIST OF TABLES

  • TABLE 0.1. The 7 main strategies being explored by the packaging supply chain to improve the sustainability of flexible packaging
  • TABLE 0.2. How the 7 strategies for sustainable package development differ in different parts of the world
  • TABLE 0.3. The 3 main materials families being considered for recyclable flexible packaging
  • TABLE 0.4. Typical materials used in flexible packaging categorised by their main property benefits and recyclablility profiles as of 2021
  • TABLE 0.5. The sustainability profile of some of the main materials used in flexible packaging in 2021
  • TABLE 1.1. Abbreviations relating to legal framework
  • TABLE 1.2. Definitions related to legal framework
  • TABLE 1.3. Technical definitions
  • TABLE 1.4. Technical abbreviations
  • TABLE 2.1. Typical flexible packaging forms
  • TABLE 2.2. Typical materials used in flexible packaging categorised by their main property benefits
  • TABLE 2.3. Summary of the main implications of EU packaging legislation on future package design
  • TABLE 2.4. Summary of the main implications of EU packaging legislation on future EPR and taxation
  • TABLE 2.5. Summary of the main implications of EU packaging legislation on future package waste management
  • TABLE 2.6. Updated packaging recycling targets to 2030 arising from the PPWD
  • TABLE 2.7. The 7 main strategies being explored by the packaging supply chain to improve the sustainability of flexible packaging
  • TABLE 2.8. How the 7 strategies for sustainable package development differ in different parts of the world
  • TABLE 2.9. Overview of the main package performance criteria for flexible packaging
  • TABLE 2.10. Typical published oxygen and water vapour transmission values for a range of different film layers used in flexible packaging
  • TABLE 2.11. Properties of flexible packaging to enable correct pack formation on packing line
  • TABLE 2.12. Properties of flexible packaging that enable reliable sealing on packing lines
  • TABLE 2.13. Typical factors influencing the total cost of sustainable flexible packaging vs. current package designs.
  • TABLE 4.1 - Summary of recyclability guidelines from different packaging organisations
  • TABLE 4.2. The 3 main materials families being considered for recyclable flexible packaging
  • TABLE 4.3. Typical materials used in flexible packaging categorised by their main property benefits and recyclablility profiles as of 2021
  • TABLE 4.4. The challenges of recyclable flexible packaging structures to match current performance needs of flexible packaging
  • TABLE 4.5. The challenges of paper-based flexible packaging to meet current performance needs of flexible packaging
  • TABLE 4.6- Recent development to improve the performance of paper packaging to enable plastic packaging replacement
  • TABLE 6.1. Examples of recyclers and suppliers of LDPE recyclate
  • TABLE 6.2. Effort at resin suppliers to supply both recyclate-virgin blends of LDPE and virgin LDPE made from chemically recycled plastic waste
  • TABLE 7.1. The main policy areas and scope of the EU Green Deal
  • TABLE 7.2. Resin supplier activity to supply sustainably sourced polyolefins
  • TABLE 7.3. Internationally recognised certification processes for sustainable sourcing of paper based packaging
  • TABLE 8.1. Overview of the biodegradable plastics used in flexible packaging
  • TABLE 8.2- Recent development to improve the performance of paper packaging to enable plastic packaging replacement
  • TABLE 9.1 - Details of consortia activity for sustainable packaging
  • TABLE 10.1. Typical materials used in flexible packaging categorised by their main property benefits
  • TABLE 10.2. The sustainability profile of some of the main materials used in flexible packaging in 2021
  • TABLE 10.3. Sustainability of LDPE in flexible packaging in 2021 to 2026
  • TABLE 10.4. Examples of recyclers and suppliers of LDPE recyclate
  • TABLE 10.5. Effort at resin suppliers to supply both recyclate-virgin blends of LDPE and virgin LDPE made from chemically recycled plastic waste
  • TABLE 10.6. Sustainability of polypropylene in flexible packaging from 2021 to 2026
  • TABLE 10.7. Sustainability of PET in flexible packaging from 2021 to 2026
  • TABLE 10.8. Sustainability of paper substrates in flexible packaging from 2021 to 2026
  • TABLE 10.9. The challenges of paper-based flexible packaging to meet current performance needs of flexible packaging
  • TABLE 10.10 Recent development to improve the performance of paper packaging to enable plastic packaging replacement
  • TABLE 10.11. Internationally recognised certification processes for sustainable sourcing of paper based packaging
  • TABLE 10.12. Sustainability of aluminium in flexible packaging from 2021 to 2026
  • TABLE 10.13. Sustainability of nylon in flexible packaging from 2021 to 2026
  • TABLE 10.14. Sustainability of EVOH in flexible packaging from 2021 to 2026
  • TABLE 10.15. Sustainability of PVdC in flexible packaging from 2021 to 2026
  • TABLE 10.16. Sustainability of PVC-based in flexible packaging from 2021 to 2026
  • TABLE 10.17. Countries where bans of PVC-based packaging are in place as of 2021
  • TABLE 10.18. Overview of the biodegradable plastics used in flexible packaging
  • TABLE 10.19. Sustainability of biodegradable plastics in flexible packaging from 2021 to 2026
目次

As of 2021, separate collection of flexible packaging waste remains a key challenge in many developed countries with greater use of recycled content is expected to 2026. This report focuses on reviewing and comparing specific strategies being adopted by the supply chain to improve the environmental profile of flexible packaging.

Public pressure and legislative action are creating impetus for change within the entire flexible packaging supply chain, and most notably the development of more sustainable package designs. The term "sustainable" is defined as packaging that is simply "better for the environment" versus alternatives. To avoid argument around such definitions, this report focuses on reviewing and comparing specific strategies being adopted by the flexible packaging supply chain to improve the environmental profile of flexible packaging. This provides the reader with a list of actionable approaches being considered by the whole flexible packaging value chain.

Our exclusive content:

  • Consideration for the development of more sustainable flexible packaging is the need to adjust strategies for different regions
  • Package material reductions have been used traditionally to justify the sustainability profile of flexible packaging. Flexible packaging is the lightest of any packaging format, providing unsurpassed performance vs. the amount of package material used
  • Technical limits for flexible packaging materials are close to being reached, with additional sustainability benefit for further reductions of existing flexible packs showing diminishing returns.

What will you discover?

  • The recyclable film options that exist today, can meet most needs for product protection, consumer interaction, pack manufacturing, aesthetics, shipment resistance and regulatory requirements, especially certain extremely high barrier requirements that may be challenging
  • The additional areas of development for flexible packaging which have focused on generally low performance applications including replacement of the PE wraps of fresh produce and bags for loose fruit and vegetables
  • How many brand owners are seeking to include post-consumer recycled content into their flexible packaging as of 2021, which supports the circular economy by establishing markets for recycled material and closes the circle of recycled material back into fresh packaging.

Who should buy the report?

  • Materials suppliers
  • Packaging converters
  • Brand owners and packaging buyers
  • Packaging and filling machinery manufacturers
  • Private and public sector, industry consultants, investors and analysts

The Smithers Methodology

This report is based on extensive primary and secondary research. Primary research consisted of interviews with targeted interviews with packaging material suppliers, converters and experts drawn from key markets. This was supported by secondary research in the form of extensive literature analysis of published data, official government statistics, domestic and international trade organisation data, company websites, industry reports, trade press articles, presentations, and attendance at trade events.

About the author

Dr. Neil Rogers is an award winning package development consultant. He spent 25 years with the Procter & Gamble Company as their global expert in flexible packaging, sustainability, bottle packing & labeling, open innovation and supplier management. He was elected to the board of the CEFLEX Consortium (Circular Economy for Flexible Packaging) and has also worked for Yara International as their only technical packaging specialist for FIBC's & FFS bags. He has extensive experience in R&D, procurement, packing line creation & optimisation, supplier agreements, package specifications, packaging environmental legislation, and patent development with over 25 patent filings.

Table of Contents

Executive Summary

  • Overview
  • Sustainable packaging development strategies
    • Reduced flexible packaging weight
    • Recyclable flexible packaging
    • Reusable flexible packaging
    • Recycled content into flexible packaging
    • Sustainably sourced materials for flexible packaging
    • Biodegradable flexible packaging
    • Waste management infrastructure for flexible packaging
    • Developing countries
    • Developed countries
  • Material considerations for sustainable flexible packaging

Introduction and Methodology

  • Introduction
  • Objectives
  • Scope
  • Methodology
  • Definitions
    • Abbreviations
    • Definitions related to legal framework
    • Technical definitions
    • Technical abbreviations

Defining 'Sustainable Flexible Packaging'

  • Introduction
  • Flexible packaging
    • Definition
    • Examples of flexible packaging forms and types
    • Materials and structures used in flexible packaging
    • Materials
    • Structures
  • Sustainable packaging definition
  • Factors driving more sustainable packaging
    • Public pressure
    • Legislation
    • Impact of EU legislative on package design
    • Impact of EU legislative on package taxation & EPR
    • Impact of EU legislative on waste management
  • Sustainable packaging development strategies
    • Definitions and global applicability
    • Reduce
    • 'Recyclable'
    • Reuse
    • Recycled content
    • Sustainably sourced materials
    • Biodegradability
    • Waste management infrastructure development
  • Flexible packaging performance needs
    • Product protection
    • Consumer interaction
    • Easy opening
    • Reclosure
    • Product dispensing
    • Microwaveable / oven ready
    • Child resistance (CR)
    • Package manufacture and format
    • Packing process
    • Material transport, forming and cutting
    • Sealing
    • Retort-ability
    • Modified atmosphere packing (MAP)
    • Shipment
    • Aesthetics
    • Financials
    • Regulatory needs
    • Sustainability

Reduced/light-weighted flexible packaging

  • Introduction
  • Downgauging
  • Rigid to flexible conversion
  • Refill packaging
  • Product concentration
  • Conclusions

'Recyclable' flexible packaging

  • Introduction
  • Definition of 'recyclable' packaging
  • Recyclable flexible packaging: Current effort
  • Recyclable flexible packaging: Performance challenges
  • Plastic to paper conversion
  • Conclusions

Reusable flexible packaging

  • Introduction
  • In-store refill
    • Rigid packaging
    • Flexible packaging
  • At-home refill
  • Conclusions

Recycled content into flexible packaging

  • Introduction
  • Sources of recycled material for flexible packaging
    • LDPE
    • HDPE
    • PET
    • PP
    • Nylon
  • Conclusions

Sustainability sourced materials for flexible packaging

  • Introduction
  • Sustainably sourced plastic
  • Paper
  • Conclusions

Biodegradable flexible packaging

  • Introduction
  • Legislative outlook
  • Plastics for biodegradable flexible packaging
  • Paper
  • Conclusions

Waste management infrastructure developments for flexible packaging

  • Introduction
  • Developing countries
  • Developed countries
    • Improved collection of flexible packaging waste
    • Improved waste management and material recovery
  • Other developments for flexible packaging
    • Retain™
    • Enval
    • Cadel de-inking
    • Erema de-odorization
    • Saperatac layer separation
  • Consortium activity
  • Conclusions

Materials for sustainable flexible packaging

  • Introduction
  • LDPE
    • Weight reductions
    • Recyclability
    • Recycled content
    • Sustainable sourcing
    • Waste management infrastructure
  • PP
    • Weight reductions
    • Recyclability
    • Recycled content
    • Sustainable sourcing
    • Waste management infrastructure
  • PET
    • Weight reductions
    • Recyclability
    • Recycled content
    • Sustainable sourcing
    • Waste management infrastructure
  • Paper
    • Recyclability
    • Sustainable sourcing
    • Biodegradable
  • Alu
    • Recyclability
    • Waste management
  • Nylon
    • Recyclability
    • Waste management
  • EVOH
    • Weight reductions and recyclability
  • PVdC
    • Weight reductions and recyclability
  • PVC
  • Biodegradable plastics
    • Biodegradability vs. circularity