TEL: 044-952-0102


Global Ocean Energy Report - Market Research

発行 NRG Expert 商品コード 204750
出版日 ページ情報 英文 202 Pages
本日の銀行送金レート: 1GBP=131.62円で換算しております。
Back to Top
海洋エネルギーの世界市場:2011年第1版 Global Ocean Energy Report - Market Research
出版日: 2012年01月01日 ページ情報: 英文 202 Pages



第1章 エグゼクティブサマリー

  • 背景
    • 技術開発
    • 市場開発
  • 潮流エネルギー
  • 波力エネルギー
  • 海洋温度差発電(Ocean Thermal Energy Conversion:OTEC)
  • 潮汐・潮流エネルギー
  • 塩分勾配
  • 施設機器製造

第2章 潮流エネルギー

  • 利点
  • 欠点
  • 潮流利用法の概念 - 潮堰
  • 二次貯水
    • 潮堰技法開発の現況
  • 技法の現況と稼働中システムの実績
    • フランス - ラランス潮堰:240メガワット
    • カナダ - アナポリス潮堰:17.8メガワット
    • 中国 - 小規模潮堰:11メガワット
  • 建設中の潮堰発電施設
    • 韓国
    • 中国の鴨緑江河口堰
  • 実験・提案目的の潮堰
    • スコットランド
    • 英国 - セバーン河口堰、マージー河口堰
    • スコットランド方式
    • ロシア連邦 - Kislogubskの400キロワット規模施設
  • その他の潮流発電見通し
  • 収益性考察
  • 環境問題

第3章 波力エネルギー

  • 波力資源
  • 波力エネルギー技術
  • 振動水柱型(Oscillating Water Column:OWC)
  • 点吸収型
  • タプチャン型(Taped Channel Power PlantT:APCHAN)
  • 重力波推進型
  • 沿岸産業との相乗効果
  • 商業波力への道筋
  • 波力エネルギー開発の現況 - 国別発展状況
  • 第4章 海洋温度差エネルギー
  • 海洋温度差エネルギー発電
  • 海洋温度差エネルギー発電技術のさらなる利点 - 深層水利用(DOWA)
  • 排他的経済水域
  • 開発状況および資金援助
  • 支援組織
  • 海洋温度差エネルギー発電市場

第5章 潮汐・潮流エネルギー

  • Marine Current Turbine社(MTC)- 世界初の潮流タービン
  • Engineering Business社(EB)の往復動式潮流発電システム(Stingray)および波力発電システム、Stingray
  • 潮流資源
    • 潮流利用技術の現況
    • 水平軸タービン(軸流タービン)
    • 垂直軸タービン(交差流タービン)
  • 沿岸産業との相乗効果
  • 調査技法上の課題
    • 海洋発電実験施設 - 韓国
  • 潮汐・潮流エネルギーの未来

第6章 塩分勾配

  • 塩分濃度差浸透圧型(濃度差発電:PRO)
  • 蒸気圧縮型
  • 逆透析型(Reverse dialysis:RED)
  • 塩分勾配発電の実証および商業化

第7章 海洋エネルギーの変換コスト

第8章 各国の再生エネルギー政策

  • 再生エネルギー目標
  • 固定買い取り制度と再生可能エネルギー利用割合基準(Renewables Portfolio Standard:RPS)
  • EUと固定買い取り制度
  • 米国と再生可能エネルギー利用割合基準
  • 欧州における固定買い取り制度
  • 米国における再生可能エネルギー利用割合基準政策の進化
  • 固定買い取り制度と再生可能エネルギー利用割合基準の比較
  • 欧州 - 欧州再生可能エネルギー令
  • 投資家の信頼、価格、政策コスト
  • 有効性
  • 技術革新と技術の多様性
  • 所有権の構造
  • 結論
  • 米国における固定買い取り制度

第9章 エネルギー形態多様性の利点

第10章 謝意

Product Code: NRGOER1

2009 was a good year for the ocean energy sector with US $246 million invested in the sector, up from the 2008 figure. Key areas of development were wave energy, and tidal and marine current projects. For both sectors, more devices reached the prototype stage and were tested out at sea. Considerably more funding has been available for projects to take this leap.

Portugal and the UK remain as the main countries for wave energy projects due to generous grants and subsidies, targets and in the case of Portugal, a feed-in tariff. If the Scottish parliament passes a proposal for wave energy projects to receive five ROCs per MWh of electricity produced and three ROCs per MWh for tidal energy projects instead of two ROCs currently received across the UK, NRG EXPERT expects the bulk of UK projects to be developed there. Other countries making significant inroads in the sector last year include Australia, the US, New Zealand and other European countries, especially Ireland.

The most established wave energy developer is still Pelamis, with many companies not far behind. Larger players have started to show an interest in wave energy. Petrobras is developing a device in conjunction with COPPE/UFRJ. Airtricity, the Irish utility, has signed an agreement with Aquamarine Power to develop 1 GW of projects by 2020. Mitsui Engineering and Shipbuilding is planning to use Ocean Power technologies (OPT) devices to develop a 10 MW farm.

For tidal and marine current projects, most are being developed in the UK, the US, Canada, Austral-asia and other European countries. Utilities have started to show more interest in the sector, with several developing projects or buying devices from developers, notably Nova Scotia Power, Scottish Renewables, RWE Innogy and npower renewables. One utility, Alstom Hydro, went one step further and bought the worldwide licence for Clean Current Power Systems' tidal devices.

UK-based Marine Current Turbines continues to be the furthest along in terms of commercialisation; however, several developers are not far behind. For example, Hammerfast Strom has been operating a 300 kW for some time and has an agreement to supply devices for Scottish Renewables projects. Verdant in the US has signed a MoU with the China Energy Conservation Environment Protection Group (CECEP) to develop projects in the country.

Although tidal barrages and lagoons are the most mature technology, very little progress was made last year. A short list of five potential ‘Severn Tidal' projects was announced and a public consultation will be held this year. However, one of the most interesting developments was a proposal to combine a road bridge and a tidal barrage across the Duddadon Estuary in Cumbria in the UK. As this would shear seventeen miles off the existing journey between the towns of Barrow and Millom, it may be more acceptable to the public than a tidal project on its own. Thus reducing opposition to the devel-opment of the project. In the second half of this year completion of the Sihwa Lake Tidal plant in Korea is expected. It will have a larger installed capacity than the 240 MW La Rance power plant in France, currently the largest plant in operation.


Ocean Thermal Energy Conversion (OTEC) is still a long way from commercialisation. DCNS, Lock-heed Martin and Xenesys have emerged as the main companies involved in OTEC projects. Last year Lockheed Martin was awarded an US $8 million component supply contract by the US military. NRG EXPERT expects military bases to be a major use of OTEC due to the high cost of diesel imports at remote island locations. Other major uses of OTEC, along with direct power use, may be desalination and sea water air conditioning.

By far the most experimental technology is still the salinity gradient. In November last year Statkraft commissioned a 2 to 4 kW prototype off Tofte near Oslo, Norway. This project is one of the relatively few salinity gradient projects, and is by far the most advanced. Thus it is unlikely that this will be a major source of power in the short term.

Table of Contents

Executive Summary

  • Background
    • Technology development
    • Market Development
  • Tidal Energy
  • Wave Energy
  • Ocean Thermal Energy Conversion (OTEC)
  • Tidal or Marine Current Energy
  • Salinity Gradients
  • Manufacturing

2. Tidal Energy

  • Advantages
  • Disadvantages
  • Technical concepts for exploiting Tidal Energy - Tidal Barrages
  • Secondary water storage
    • Current Development of Tidal Barrage Schemes
  • Technical status and experience from operating systems
    • France - La Rance 240 MW Tidal Barrage
    • Canada - Annapolis 17.8 MW Tidal Barrage
    • China - 11 MW of small Tidal Barrages
  • Tidal barrage plant under construction
    • Korea
    • China Yalu River Tidal Barrage
  • Experimental and proposed tidal barrages
    • Scotland
    • United Kingdom - Severn Estuary, Mersey Estuary
    • Scottish schemes
    • Russian Federation - Kislogubsk 400 kW
  • Other tidal flow prospects
    • Australia - Derby
    • United States
    • Argentina
    • Canada
    • China
    • India
    • Korea (Republic)
    • Mexico
  • Economic considerations
  • Environmental aspects

3. Wave Energy

  • Wave resources
  • Wave energy technology
    • WECS (Wave energy conversion systems)
    • Oscillating water column (OWC)
    • Wave surge or focussing devices - Tapchan (Tapered channel system)
    • Floats or buoys
  • Oscillating Water Column (OWC)
    • Siadar Wave Energy Project (SWEP)
  • Figure 3.6: MK3PC installed at Port Kembla
  • Source; Oceanlinx
    • Sperboy
    • Voith Hydro (Wavegen)
  • Point Absorber
    • Finavera Renewables
    • Ocean Power Technologies
    • McCabe Wave Pump
    • Pelamis Wave Power Ltd
    • AWS Ocean Energy (Archimedes Wave Swing)
  • Tapchan
    • Wave Dragon
    • Other
    • Searaser
    • Wave Hub
  • Wave Propulsion
  • Synergies with the offshore industry
  • The road to commercial wave power
  • Current status for Wave Energy development - Country Developments
    • Australia
    • China
    • Denmark
    • India
    • Indonesia
    • Ireland
    • Japan
    • Maldives
    • Norway
    • Portugal
    • Romania
    • Spain
    • Sweden
    • United Kingdom
    • United States

4. Ocean Thermal Energy

  • Ocean Thermal Energy Conversion (OTEC)
  • Additional benefits of OTEC technology - DOWA
  • Exclusive Economic Zone (EEZ)
  • Status of development and funding support
  • Support organisations
    • The International OTEC/DOWA Association (IOA)
    • EU and Maritime Industries Forum
    • Japan Association of Deep Ocean Water Applications
  • Markets for OTEC
    • Country Developments
    • Cðte d' Ivoire
    • Cuba
    • Fiji
    • French Polynesia
    • Guadeloupe
    • India
    • Indonesia
    • Jamaica
    • Japan
    • Kiribati
    • Marshall Islands
    • Nauru
    • Netherlands Antilles
    • New Caledonia
    • Puerto Rico
    • Sri Lanka
    • St. Lucia
    • Taiwan
    • United States

5. Tidal or Marine Current Energy

  • Marine Current Turbines (MCT) - The world' s first marine current turbine
  • Stingray and the EB Frond, the Engineering Business (EB)
  • The Marine Current resource
    • Status of Marine Current technology
    • Horizontal Axis Turbines (axial flow turbine)
    • Vertical Axis Turbines (cross flow turbine)
  • Synergies with the offshore industry
  • Technical problems for research
    • Experimental marine plant, Korea
  • Future of Tidal and Marine Current Energy

6. Salinity Gradients

  • Pressure retarded osmosis (PRO).
  • Vapour compression
  • Reverse dialysis (RED)
  • Demonstration and commercialisation of salinity gradient power

7. Ocean Energy Conversion Costs

8. National Policies for Renewable Energy

  • Renewable energy targets
  • Feed-in tariffs and RPS
  • EU and feed-in tariffs
  • US and RPS
  • The feed-in tariff in Europe
  • The evolution of RPS Policy in the United States
  • Comparison of feed-in tariffs and RPS
  • Europe - the EU Renewable Energy Directive
  • Investor confidence, price, and policy cost
  • Effectiveness
  • Innovation and technology diversity
  • Ownership structure
  • Conclusion
  • Feed-in tariffs in the United States

9. Benefits of Different Forms of Energy

10. Acknowledgements


  • Figure 1.1: Status of ocean energy technologies, December 2007
  • Figure 1.2: Planned and historical development of wave and tidal projects, MW
  • Figure 1.3: Project status by country, December 2007
  • Figure 1.4: Level of Research & Development and Demonstration investment by members of the IEA Implementing Agreement on Ocean Energy Systems
  • Figure 2.1: The Global Tidal Resource
  • Figure 2.2: La Rance Tidal Barrage
  • Figure 2.3: Tidal Current Power
  • Figure 2.4: Base Data for the Severn Barrage
  • Figure 2.5: Proposed Severn Barrage
  • Figure 3.1: Wave power resources of the world
  • Figure 3.2: The Mighty Whale
  • Figure 3.3: Offshore test centres for wave energy
  • Figure 3.4: Proposed European Test Centres
  • Figure 3.5: Development programme for WECs
  • Figure 3.6: MK3PC installed at Port Kembla
  • Figure 3.7: SPERBOY Oscillating Water Column device
  • Figure 3.8: Limpet shoreline energy module
  • Figure 3.9: Finavera AquabuOY
  • Figure 3.10:Floating buoy energy converters
  • Figure 3.11: CETO device
  • Figure 3.12: Wavebob
  • Figure 3.13: Wave Star device
  • Figure 3.14: Pelamis
  • Figure 3.15: Archimedes Wave Swing III (AWS III)
  • Figure 3.16: Wave Dragon Floating Tapchan
  • Figure 3.17: Waveplane
  • Figure 3.18: Searaser
  • Figure 3.19:Wave Hub
  • Figure 3.20: The Orcelle, sustainably powered ship
  • Figure 3.21: Pelamis wave farm in Portugal
  • Figure 3.22: The UK wave power resource
  • Figure 3.23: Humboldt WaveConnect"! Pilot Project
  • Figure 4.1: OTEC resource map
  • Figure 4.2: The OTEC device
  • Figure 4.3: Energy Island systems diagram perspective view
  • Figure 4.4: Makai Ocean Engineering List Open Cycle OTEC plant
  • Figure 5.1: The Seagen Marine Current Turbine
  • Figure 5.2: SeaGen in Strangford Lough
  • Figure 5.3: Marine Current Turbine second generation device
  • Figure 5.4: Third generation SeaGen device
  • Figure 5.5: Atlantic Resources' AK 1000 turbine
  • Figure 5.6: BioSTREAM device
  • Figure 5.7: Fri-El Green Power ship
  • Figure 5.8: Hammerfest Strom HS1000 turbine
  • Figure 5.9: Early rendering of Hydro Green Energy' s dual ducted hydrokinetic turbine array (HTA) as viewed from below the surface of the water
  • Figure 5.10: Lunar Energy' s Rotech Tidal Turbine
  • Figure 5.11: Ocean Renewable Power' s RivGen"!, TidGen"!, and OCGen"! systems
  • Figure 5.12: Open Hydro seabed mounted open-centre turbine
  • Figure 5.13: TidEL Tidal Energy Device
  • Figure 5.14: Stingray and EB Frond Wave Energy Devices
  • Figure 5.15: Verdant Power' s free flow system
  • Figure 5.16: Marine Current resource in the UK
  • Figure 5.17: Comparison of offshore wind turbine and marine or tidal current turbine projects
  • Figure 7.1: Wave power installed cost curve versus other renewables
  • Figure 7.2: Generation costs from Ocean Energy Conversion estimated experience
  • Figure 7.3: EU wind and wave deployment and costs
  • Figure 7.4: Capital cost breakdown for a particular wave energy device
  • Figure 7.5: Capital cost breakdown for installation of a particular tidal stream energy device in a tidal stream farm of a certain size
  • Figure 8.1: National renewable energy policies in EU countries
  • Figure 8.2: US states with RPS regulations, August 2010


  • Table 1.1: Marine Energy sources and product
  • Table 1.2: The size of the oceanic energy resource
  • Table 1.3: Ocean energy projects installed or under construction in IEA Ocean member states, kW, end 2009
  • Table 1.4: Consent process for ocean energy projects in selected countries
  • Table 2.1: Prospective Sites for Tidal Energy Projects
  • Table 2.2: Comparison of World Tidal Schemes in Existence or Proposed
  • Table 2.3: Identified for Possible Tidal Barrage Plants
  • Table 3.1: Six types of WEC identified by the EMEC
  • Table 3.2: List of wave developers
  • Table 3.3: Status of known wave energy projects in November 2008
  • Table 3.4: Schedule and budget for the development of a WEC prototype
  • Table 3.5: Six Pelamis projects at various stages of development
  • Table 3.6: Comparison of three different wave devices at three sites in Canada
  • Table 3.7: Required price of electricity for a 10-year simple payback period for three wave devices, C$
  • Table 3.8: Status of wave energy projects in Denmark at the end of 2009
  • Table 3.9: Planned development of wave energy devices in Ireland
  • Table 3.10: Recipients Prototype Development Funds
  • Table 3.11: Prototype Development Funds for different project phases
  • Table 3.12: Potential for Marine Energy Converter Technologies in New Zealand
  • Table 3.13: Recipients of the ‘Wave and Tidal Stream Energy Technologies' funding round
  • Table 3.14: Recipients of Round 1 of the WATERS fund
  • Table 3.15: Wave project developers awarded licences for Crown Estate marine sites
  • Table 3.16: ROCs received per technology, April 2010
  • Table 3.17: Wave device testing sites in the UK
  • Table 3.18: Wave projects included in the Advanced Water Technologies receiving DOE funding, 2009
  • Table 3.19: Recipients of SBIR funding
  • Table 4.1: Seawater air conditioning plants
  • Table 4.2: Reported advantages and challenges for the Energy Island
  • Table 4.3: OTEC projects included in the Advanced Water Technologies receiving DOE funding, 2009
  • Table 5.1: Tidal or marine current energy devices
  • Table 5.2: Methods to fix turbine energy converters to the seabed
  • Table 5.3: Tidal or marine current developers
  • Table 5.4: Status of known marine and hydrokinetic projects in November 2008
  • Table 5.5: Kilowatt of electricity produced per tonne of turbine
  • Table 5.6: Biopower projects
  • Table 5.7: Verdant Power tidal projects
  • Table 5.8: Distribution of potential tidal sites in Canada
  • Table 5.9: Recipients of Clean Energy Funds
  • Table 5.10: Ocean projects awarded ICE funds in British Columbia
  • Table 5.11: Three tidal technology projects in the Netherlands
  • Table 5.12: Tidal project developers awarded licences for Crown Estate marine sites
  • Table 5.13: Tidal projects included in the Advanced Water Technologies receiving DOE funding, 2009
  • Table 8.1 Renewables targets and support schemes of European countries
  • Table 8.2 Non-European countries with renewable energy targets and plans
  • Table 8.3: State RPS resource tiers
  • Table 9.1: The Advantages and Disadvantages of Different Energy Technologies
Back to Top