特集: 調査項目の変更・追加が可能なセミカスタムオーダー型の調査レポート(Lucintel社)はこちら

特集 : 国別の市場調査レポートをお探しの方はこちら

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ポリマー向け化学工業原料としての二酸化炭素 (CO2):技術・ポリマー・開発企業・生産企業

Carbon Dioxide (CO2) as Chemical Feedstock for Polymers - Technologies, Polymers, Developers and Producers

発行 Nova-Institut GmbH 商品コード 892536
出版日 ページ情報 英文 53 Pages
即納可能
価格
本日の銀行送金レート: 1USD=108.13円で換算しております。
ポリマー向け化学工業原料としての二酸化炭素 (CO2):技術・ポリマー・開発企業・生産企業 Carbon Dioxide (CO2) as Chemical Feedstock for Polymers - Technologies, Polymers, Developers and Producers
出版日: 2019年02月28日 ページ情報: 英文 53 Pages
概要

当レポートでは、ポリマー向け化学工業原料としての二酸化炭素 (CO2) について取り上げ、技術的な観点からCO2から製造されるポリマーについて調査し、既に企業によって開発・製造・市販されているポリマーの概要を提供しており、各種方法を用いたCO2ベースの構成要素・ポリマー製造の機会について詳細に説明しています。

第1章 イントロダクション

第2章 CO2の活用とは?

  • 「二酸化炭素回収・有効利用 (CCU) 」とは何か、またその主要なメリットとは?
  • どのCO2原料が利用可能か?
  • CCU燃料、化学品、および鉱物のアプリケーションとは?
  • 石油化学またはバイオベース製品と比較して製品におけるCO2の利用はどの程度持続可能か?
  • 持続可能のために、有機化学、CO2の利用は不可欠
  • 再生可能エネルギー拡大のためのCCUのさらなるメリット
  • 半商業的なCO2利用プラントの導入

第3章 CO2ベースの構成要素およびポリマー

第4章 ポリカーボネート

  • 脂肪族ポリカーボネート (APC)
    • 直鎖脂肪族ポリカーボネート
    • 脂環式ポリカーボネート
  • 芳香族ポリカーボネート
  • ポリカーボネートの開発に積極的な企業
    • 旭化成 (日本)
    • Cardia Bioplastics (オーストラリア)
    • Covestro AG (former Bayer MaterialScience) (ドイツ)
    • Empower Materials Inc. (米国)
    • Huinnovation Co. Ltd. (South Korea)
    • Jiangsu Zhongke Jinlong-CAS Chemical Co. Ltd. (中国)
    • Jilin Boda New Materials Co. Ltd. (中国)
    • Mengxi High-Tech Group Co. Ltd. (中国)
    • 三菱化学 (日本)
    • Novomer Inc. (米国) / Saudi Aramco Materials (サウジアラビア/米国)
    • Norner Innovation S.A (Norway) / SCG Chemicals (タイ)
    • Saudi Aramco LCC (Saudi Arabia, 米国)
    • Siemens AG / BASF AG (ドイツ)
    • SK Innovation Co., Ltd. / SK Global Chemical Co., Ltd. (韓国)
    • Taizhou BangFeng Plastics Co., Ltd.(中国)
    • 帝人 (日本)
    • Tianguan Group / Nanyang Zhongju Tianguan (中国)

第5章 CO2由来ポリオールに基づいたポリウレタン (PU)

  • CO2をベースにしたPUの開発に積極的な企業
    • Covestro AG (formerly Bayer MaterialScience) (ドイツ)
    • Econic Technologies (United Kingdom)

第6章 メタノールからのオレフィン合成 (MTO)

第7章 合成ガスベースのプロセス

第8章 電気化学からのポリマー

  • 電気化学に積極的な企業・研究グループ
    • Avantium B.V. (The Netherlands; technology of former Liquid Light Inc., 米国)
    • eEthylen (ドイツ)
    • Spectrum Global Solutions Inc. (formerly Mantra Venture Group) (カナダ)).
    • The State University of New Jersey (米国)

第9章 バイオテクノロジーによる方法:ポリヒドロキシアルカノエート (PHA) 、ポリ乳酸 (PLA) および他のマテリアル

  • 概要
  • バイオテクノロジーを用いたCO2ベースのポリマーに積極的な企業
    • Bio-On S.p.A / Gruppo Hera / Lux-On (イタリア)
    • Kiverdi Inc. (米国)
    • LanzaTech Inc., (NZ/米国)
    • NatureWorks LLC / Calysta Energy (米国)
    • Newlight Technologies Inc. (米国)
    • OakBio Inc. (米国)
    • Photanol B.V. (オランダ)
    • Phytonix Corporation (米国)

第10章 図表リスト

第11章 頭字語リスト

目次

Already more than 160,000 tonnes of CO2-based polymers on the market

nova-Institute presents a unique trend report on the utilisation of carbon dioxide (CO2) as a chemical feedstock for a wide range of polymers. The report includes the relevant technologies, polymers, developers and producers of this growing sector with high economic and sustainability potential. Additionally, it shows that already more than 160,000 tonnes of CO2-based polymers are on the market.

For many, the use of carbon dioxide (CO2) with the help of renewable energies is still a novelty, although a lot of new activities arose in the last few years. Currently, most studies and investments in the area of CO2 utilisation focus primarily on fuels. This rather narrow-minded point of view misses the big potential of CO2 as a renewable and sustainable carbon feedstock for the chemical industry of the future. The organic chemistry and the polymer production cannot decarbonise, simply for the reason that carbon is the key molecule in this area - given this constraint, a renewable alternative to fossil feedstocks is needed. A large number of high-value chemicals and especially polymers can be produced from CO2 in different ways - from direct chemical or biochemical synthesis as well as from indirect use of CO2-based intermediates and building blocks.

image1

In March 2018, nova-Institute published the first worldwide technology study on this topic: "Carbon dioxide (CO2) as a chemical feedstock for polymers - technologies, polymers, developers and producers" which has now been updated comprehensively. The study investigates from a technological point of view which polymers can be produced from CO2 and provides an overview of the polymers that have already been developed, produced and marketed and by which companies.

The report goes into detail about various opportunities to produce building blocks and polymers based on CO2 via different pathways: Chemical catalytic processes are used to produce chemicals such as aromatic phosgene-free polycarbonates (PC) or aliphatic polycarbonates (APC) like polypropylene carbonate (PPC), polyethylene carbonate (PEC), polylimonene carbonate (PLimC) and polyurethanes (PUR) that are synthesised with CO2-based polyols. Biotechnological approaches - fermentation of CO2 or CO2-rich syngas (generally containing carbon monoxide (CO), CO2 and hydrogen (H2)) via microorganisms like bacteria, algae and cyanobacteria - lead to building blocks such as lactic acid or succinic acid, from which polymers like polylactic acid (PLA) or polybutylene succinate (PBS) can be made. Polyhydroxyalkanoates (PHAs) are polymers which can be directly derived by fermentation of CO2 without any intermediate building blocks. Electrochemical pathways, for example to monoethylene glycol (MEG), which is used for the production of polyethylene terephthalate (PET), are also described in the report. Additionally, the use of CO2-based methanol as a feedstock is an alternative route to produce olefins via an already established process, the "Methanol to Olefin (MTO)" process. Also, a huge potential lies in the so-called "Blue Crude" oil substitute that can be produced via a Fischer-Tropsch synthesis from syngas and directly substitute crude oil in a refinery for the production of conventional fuels, chemicals and polymers as drop-ins based on a renewable carbon feedstock.

First pilot demonstration and commercial production plants are already installed in which CO2 is used either directly as a building block for polymers or indirectly in combination with other, non-CO2-derived monomers to obtain a large array of plastics with tailor-made properties. The report describes at least 30 companies from Asia, Europe and North America are already working on a large number of CO2-based polymers and plastics - leading to a total of more than 160,000 tonnes of CO2-based polymers already on the market.

Table of Contents

1 Introduction

2 What is CO2 utilisation?

  • 2.1 What does "Carbon Capture and Utilisation (CCU)" mean and what are the main benefits?
  • 2.2 Which sources of CO2 are available?
  • 2.3 What are the applications for CCU fuels, chemicals and minerals?
  • 2.4 How sustainable is the use of CO2 in products compared to petrochemical or bio-based products?
  • 2.5 For sustainable, organic chemistry, the use of CO2 is crucial
  • 2.6 Additional benefits of CCU for the expansion of renewable energies
  • 2.7 Implementations of (semi)commercial CO2 utilisation plants
    • 2.7.1 CO2 utilisation via synthesis of fuels, gases, polymers and other chemicals
    • 2.7.2 CO2 mineralisation via production of carbonate materials
    • 2.7.3 Carbon utilisation via chemical recycling

3 CO2-based building blocks and polymers

4 Polycarbonates

  • 4.1 Aliphatic polycarbonates (APCs)
    • 4.1.1 Linear aliphatic Polycarbonates
    • 4.1.2 Cyclo-aliphatic polycarbonates
  • 4.2 Aromatic polycarbonates
  • 4.3 Companies active in polycarbonates development
    • 4.3.1 Asahi Kasei Chemicals Corporation (Japan)
    • 4.3.2 Cardia Bioplastics (Australia)
    • 4.3.3 Covestro AG (former Bayer MaterialScience) (Germany)
    • 4.3.4 Empower Materials Inc. (USA)
    • 4.3.5 Huinnovation Co. Ltd. (South Korea)
    • 4.3.6 Jiangsu Zhongke Jinlong-CAS Chemical Co. Ltd. (China)
    • 4.3.7 Jilin Boda New Materials Co. Ltd. (China)
    • 4.3.8 Mengxi High-Tech Group Co. Ltd. (China)
    • 4.3.9 Mitsubishi Chemical Corporation (Japan)
    • 4.3.10 Novomer Inc. (USA) / Saudi Aramco Materials (Saudi Arabia/USA)
    • 4.3.11 Norner Innovation S.A (Norway) / SCG Chemicals (Thailand)
    • 4.3.12 Saudi Aramco LCC (Saudi Arabia, USA)
    • 4.3.13 Siemens AG / BASF AG (Germany)
    • 4.3.14 SK Innovation Co., Ltd. / SK Global Chemical Co., Ltd. (South Korea)
    • 4.3.15 Taizhou BangFeng Plastics Co., Ltd.(China)
    • 4.3.16 Teijin Ltd. (Japan)
    • 4.3.17 Tianguan Group / Nanyang Zhongju Tianguan (China)

5 Polyurethanes (PU) based on CO2-derived polyols

  • 5.1 Companies active in PU development based on CO2
    • 5.1.1 Covestro AG (formerly Bayer MaterialScience) (Germany)
    • 5.1.2 Econic Technologies (United Kingdom)

6 Methanol to Olefins (MTO)

7 Processes based on syngas

8 Polymers from electrochemistry

  • 8.1 Companies and Research Groups active in electrochemistry
    • 8.1.1 Avantium B.V. (The Netherlands; technology of former Liquid Light Inc., USA)
    • 8.1.2 eEthylen (Germany)
    • 8.1.3 Spectrum Global Solutions Inc. (formerly Mantra Venture Group) (Canada)).
    • 8.1.4 The State University of New Jersey (USA)

9 Biotechnology routes: Polyhydroxyalkanoates (PHAs), polylactic acid (PLA) and other materials

  • 9.1 General overview
  • 9.2 Companies active in CO2-based polymers via biotechnology
    • 9.2.1 Bio-On S.p.A / Gruppo Hera / Lux-On (Italy)
    • 9.2.2 Kiverdi Inc. (USA)
    • 9.2.3 LanzaTech Inc., (NZ/USA)
    • 9.2.4 NatureWorks LLC / Calysta Energy (USA)
    • 9.2.5 Newlight Technologies Inc. (USA)
    • 9.2.6 OakBio Inc. (USA)
    • 9.2.7 Photanol B.V. (The Netherlands)
    • 9.2.8 Phytonix Corporation (USA)

10 List of figures

11 List of acronyms