メールサービス キャンペーン : 期間中に新規登録や配信希望カテゴリの変更等をされた方に、ご用意した無料レポートを提供しております。 新規登録 / 登録内容変更

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

スマートウィンドウの世界市場:2018-2027年

SMART WINDOWS MARKETS: 2018-2027

発行 n-tech Research, a NanoMarkets company 商品コード 299240
出版日 ページ情報 英文 70 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=112.40円で換算しております。
Back to Top
スマートウィンドウの世界市場:2018-2027年 SMART WINDOWS MARKETS: 2018-2027
出版日: 2018年04月18日 ページ情報: 英文 70 Pages
担当者のコメント
スマートウインドウ市場では定評のあるレポートです。定期的に更新版を発行しており、今版が最新版となります。 スマートウィンドウの材料にフォーカスしたレポート(2017年発行)もございます。
概要

当レポートでは、世界のスマートウィンドウの市場を調査し、スマートウィンドウの主要技術と競合マッピング、主要技術の将来性、主要事業者による技術開発の動向、商業ビル・住宅・各種輸送部門におけるスマートウィンドウの動向と10カ年成長予測などをまとめています。

エグゼクティブサマリー

第1章 イントロダクション

  • 本レポートの背景
  • 調査目的・調査範囲
  • 調査手法
  • 構成

第2章 21世紀のスマートウィンドウ技術

  • スマートウィンドウ分野の技術リーダーシップ
  • スマートウィンドウ技術の競合マッピング
  • エレクトロクロミック技術の進化
    • ECの事例
    • ECガラス vs ECフィルム
    • ChromoGenics (スウェーデン)
    • e-Chromic Technologies (米国)
    • EControl-Glas (ドイツ)
    • Gentex (米国)
    • SageGlass (米国)
    • View (米国)
  • RFI・SPD技術の将来性
    • RFIの財務状況
    • SPDの用途と市場機会
  • PDLC技術の将来性
  • パッシブスマートウィンドウ技術
    • Pleotint (米国)
    • 近年のアライアンス・プロジェクト
    • RavenWindow (米国)
  • 本章の要点

第3章 建物向けスマートウィンドウ:10カ年予測

  • 建設市場におけるスマートウィンドウ:影響因子
  • 10カ年予測:商業ビル・住宅用スマートウィンドウ
  • 商業ビル
    • 技術別内訳
    • ビルタイプ別内訳
  • 住宅
    • 収益:各種区分別
  • IoT対応スマートウィンドウ:新しい時代の幕開け
  • 本章の要点

第4章 輸送:自動車・鉄道・船舶・航空機とスマートウィンドウ

  • 排出基準と輸送部門におけるスマートウィンドウの成長
  • スマートウィンドウによる高級ブランドの確立
  • 10カ年予測
    • 輸送部門向けスマートウィンドウ:地域別
    • 自動車区分向けスマートウィンドウ
    • 航空宇宙区分向けスマートウィンドウ

用語・略語

著者について

目次
Product Code: Nano-0418

n-tech has been covering smart windows markets for almost a decade and has watched the industry struggle through years of trying to make a case for smart windows based entirely on energy savings. While energy savings will remain a powerful driver for smart windows the report identifies several other technological and market drivers that are combining to make 2018 a transformatory year for the business.

This report quantifies the market for smart window" based on electrochromic (EC), SPD, PDLC and passive technologies in both volume (square meters) and value ($ millions) terms. It also discusses how smart windows are being aggressively melded into the Internet-of-things (IoT) business ecosystem and how the markets for smart windows are moving beyond the luxury buildings that characterized smart windows up until now. Both smart windows for buildings and transportation (automotive, aerospace and marine) are covered.

The report provides ten-year revenue forecasts broken out by material/technology type and application. In addition, the report discusses the business models being employed by leading firms in the smart windows space including their use of automation. Companies discussed in this report include: Argil, Chameleon, Guardian, Polytronix, Research Frontiers, SageGlass/Saint-Gobain, View, Smart Film Glass, RavenWindow, Pleotint, ChromoGenics, EControl-Glas, e-Chromic, Gentex, Boeing, Daimler-Benz, PPG, Asahi Glass and Vision Systems Aeronautics.

Table of Contents

Executive Summary

  • E.1 Changes Since the Last Report
  • E.2 Summary of Market Opportunities
    • E.2.1 Radiation Detection Materials
    • E.2.2 Medical Applications
    • E.2.3 National Security and Government
    • E.2.4 General Industrial Applications
    • E.2.5 The Growing Need for Portable Systems
  • E.3 Summary of Ten-year Forecasts of Radiation Detection Equipment and Materials

Chapter One: Introduction

  • 1.1 Background to this Report
    • 1.1.1 New Opportunities in the Radiation Materials Market
    • 1.1.2 Medical Applications for Radiation Detection Equipment
    • 1.1.3 Security Applications for Radiation Detection Equipment
    • 1.1.4 Energy Industry Applications
    • 1.1.5 Other Applications
  • 1.2 Objectives and Scope of this Report
  • 1.3 Methodology of this Report
    • 1.3.1 Forecasting Methodology
  • 1.4 Plan of this Report

Chapter Two: Trends in Materials for Radiation Detection

  • 2.1 Continuing Shifts Away from Legacy Materials
  • 2.2 Commercialization of Newer Scintillation Materials
  • 2.3 Development of Alternative Semiconductor Radiation Detection Materials
  • 2.4 Replacing 3-Helium for Neutron Detection
  • 2.5 The Radiation Detection Materials Supply Chain
    • 2.5.1 Impact of New Materials on Marketing and Production Strategies
    • 2.5.2 Opportunities for Partnerships Between Materials Firms and Equipment Suppliers
    • 2.5.3 Constraints on Raw Material Supply
  • 2.6 Ten-year Forecast of Radiation Detection Materials by Type of Material
    • 2.6.1 Forecasting Methodology
    • 2.6.2 Forecasts of Scintillation Materials
    • 2.6.3 Forecasts of Semiconductor Materials
    • 2.6.4 Forecasts of Neutron Detection Materials
    • 2.6.5 Forecasts by Radiation Detection Application
    • 2.6.6 Forecasts by Geography
  • 2.7 Key points from this chapter

Chapter Three: Medical Applications for Radiation Detection Equipment

  • 3.1 Important Policy Trends
    • 3.1.1 Requirements in Europe
    • 3.1.2 Accreditation of Medical Facilities in the U.S.
    • 3.1.3 Push to Digital X-ray Technology
    • 3.1.4 Japan Established Diagnostic Reference Levels for Medical Radiation
  • 3.2 Regulatory and Policy Changes Affecting the Market
    • 3.2.1 Health Insurance and Healthcare Funding
    • 3.2.2 Changing Rules in the United States
  • 3.3 Key Equipment Suppliers of Medical Radiation Detection Equipment
  • 3.4 Important Technology Trends
  • 3.5 Diagnostic Equipment for Nuclear Imaging
  • 3.6 Radiotherapy
    • 3.6.1 Image-guided Radiotherapy
    • 3.6.2 Linear Acclerators
    • 3.6.3 Gamma Cameras
    • 3.6.4 Treatment for Early Stage Cancer
  • 3.7 X-Ray Imaging
    • 3.7.1 3D Mammography
    • 3.7.2 Bone Densitometry
    • 3.7.3 CT Scanning
  • 3.8 Pharmaceutical Industry Applications
    • 3.8.1 Radiation Detection Needs
  • 3.9 Prospects for Suppliers of Radiation Detection Equipment for Medical Applications
    • 3.9.1 X-ray Imaging Continues to Dominate
    • 3.9.2 In-Vivo Anatomy and Functional Visualization
    • 3.9.3 The Importance of Low-Radiation Dosage
    • 3.9.4 Changes in the PET and Nuclear Medicine Market
  • 3.10 Key Points from this Chapter

Chapter Four: Applications Focused on National and International Security

  • 4.1 The Landscape of Radiation Detection Equipment for Security Applications
    • 4.1.1 Types of Radiation Detection Devices in Use
  • 4.2 Key Equipment Suppliers
  • 4.3 Military Markets for Radiation Detection Equipment
    • 4.3.1 Portable Detection Devices
    • 4.3.2 Opportunities for Larger Scale Systems
  • 4.4 Role of Radiation Detection Equipment in Controlling Nuclear Weapons Proliferation
  • 4.5 Domestic/Homeland Security
    • 4.5.1 Protection of Ports and Borders
    • 4.5.2 Protection of Cities and Buildings
    • 4.5.3 Keeping U.S. Cities Safe
    • 4.5.4 Addressing the needs of Police and other First Responder Services
  • 4.6 Need for Radiation Detection by Individual Citizens
  • 4.7 Key Points from this Chapter

Chapter Five: Energy Industry

  • 5.1 Radiation Equipment for Nuclear Power Plants
    • 5.1.1 Impact of National Plans for Nuclear Power
    • 5.1.2 Safety Concerns
    • 5.1.3 Detection Equipment Used in Nuclear Power Plants
    • 5.1.4 Suppliers of Radiation Detection Equipment for Nuclear Power Plants
  • 5.2 Oil and Mining Industries
    • 5.2.1 Fracking
    • 5.2.2 Well-logging Devices
    • 5.2.3 Detectors and Data Collection Systems
    • 5.2.4 Compact and Portable Systems
    • 5.2.5 Equipment Companies
  • 5.3 Waste Disposal
    • 5.3.1 Detecting Radioactive Waste
    • 5.3.2 Detecting Waste from Oil and Gas Wells
    • 5.3.3 Measuring Radioactivity in Medical Waste
    • 5.3.4 Measuring Radioactivity in Landfills
    • 5.3.4 Equipment companies
  • 5.4 Key Points from this Chapter

Chapter Six: General Industrial and Scientific Applications

  • 6.1 Radiation Detection Needs of the Food Industry
    • 6.1.1 Impact of Food Irradiation and Related Government Guidelines
  • 6. 2 Scrap Metal Recycling
    • 6.2.1 Guidelines and the Need for Monitoring
    • 6.2.2 Response of the Recycling Industry
  • 6.3 Industrial Radiography Markets for Radiation Detection
  • 6.4 High-energy Physics and the Needs of Large Laboratories
  • 6.5 Key Points from this Chapter

Chapter Seven: Ten-Year Forecasts of Radiation Detection Equipment

  • 7.1 Forecast Methodology
  • 7.2 Forecasts by Sector
  • 7.3 Industrial and Scientific Applications
  • 7.4 Forecasts by Type of Equipment
  • 7.5 Forecasts by Geography

Chapter Eight: Profiles of Leading Companies in the Radiation Detection Market

  • 8.1 Arktis Radiation Detectors
    • 8.1.1 Arktis' Next-generation Radiation Detection Platform
  • 8.2 Mirion Technologies
    • 8.2.1 Acquisition of Canberra strengthens Mirion in the Nuclear Community
  • 8.3 Kromek Group
    • 8.3.1 Kromek delivered 10K D3S Detectors to DARPA's SIGMA Program
    • 8.3.2 Kromek sees Growth with Long-term Contracts Worldwide
  • 8.4 ORTEC
    • 8.4.1 ORTEC Innovating Products to Support and Increase Sales of HPGe
  • 8.5 Saint-Gobain Crystals
    • 8.5.1 Driving Growth Through Improving Performance of Existing Materials
    • 8.5.2 BrilLanCe Range is a Key Pathbreaker
  • 8.6 Zecotek Photonics
    • 8.6.1 Specialization in LFS crystals
  • 8.7 Dynasil
    • 8.7.1 RMD adds Value to Dynasil
  • Acronyms and Abbreviations Used in this Report
  • About the Analyst

List of Exhibits

  • Exhibit E-1: The Market for Radiation Detection Equipment
  • Exhibit E-2: Revenue from Scintillator and Semiconductor Materials by Applications, $ Millions
  • Exhibit 2-1: Comparison of Fluoride-based Scintillation Materials
  • Exhibit 2-2: Comparison of Oxide-based Scintillation Materials
  • Exhibit 2-3: Worldwide Scintillation Material Volume and Revenue, by Material Type
  • Exhibit 2-4: NaI Scintillator Volume and Revenue, by Application
  • Exhibit 2-5: CsI Crystal Scintillator Volume and Revenue, by Application
  • Exhibit 2-6: CsI Thin-Film Scintillator Volume and Revenue, by Application
  • Exhibit 2-7: Lanthanum-based Scintillator Volume and Revenue, by Application
  • Exhibit 2-8: Other Simple Salts Scintillator Volume and Revenue, by Application
  • Exhibit 2-9: CLYC-based Scintillator Volume and Revenue, by Application
  • Exhibit 2-10: Oxide-based Scintillator Volume and Revenue, by Application
  • Exhibit 2-11: Silicate-based Scintillator Volume and Revenue, by Application
  • Exhibit 2-12: Yttrium-based Scintillator Volume and Revenue, by Application
  • Exhibit 2-13: Plastic Scintillator Volume and Revenue, by Application
  • Exhibit 2-14: Nanomaterials Volume and Revenue, by Application
  • Exhibit 2-15: HPGe Volume and Revenue, by Application
  • Exhibit 2-16: CdTe/CZT Volume and Revenue, by Application
  • Exhibit 2-17: Other Semiconductor Volume and Revenue, by Application
  • Exhibit 2-18: Revenue for 3He Replacements, by Material, $ Millions
  • Exhibit 2-19: Revenue for 3He Replacements, by Material, $ Millions
  • Exhibit 3-1: Recent Developments at the Joint Commission
  • Exhibit 3-2: Companies Supplying Radiation Detection Equipment for Medical Applications
  • Exhibit 3-3: PET/CT System Comparison
  • Exhibit 3-4: PET/MRI System Comparison
  • Exhibit 3-5: SPECT/CT System Comparison
  • Exhibit 3-6: Different Types of Detectors Used in the Pharmaceutical Industry
  • Exhibit 4-1: Radiation Detection Equipment for Domestic Security and Military Applications
  • Exhibit 4-2: Companies Supplying Radiation Detection Equipment for Security and Military Applications
  • Exhibit 4-3: Worldwide Nuclear Weapons Arsenals
  • Exhibit 4-4: TSA-approved Vendors for Scanning at Airports
  • Exhibit 6-1: Food Irradiation Status by Country/Region
  • Exhibit 7-1: The Market for Radiation Detection Equipment, by Sector
  • Exhibit 7-2: The Market for Radiation Detectors for Nuclear Power Plants
  • Exhibit 7-3: The Market for Radiation Detectors for Food Irradiation Safety
  • Exhibit 7-4: The Market for Radiation Detectors for Scrap Metal Recycling
  • Exhibit 7-5: The Market for Radiation Detectors for Industrial Radiography
  • Exhibit 7-6: The Market for Radiation Detectors for Oil and Mining Exploration
  • Exhibit 7-7: The Market for Radiation Detectors for Physics Laboratories
  • Exhibit 7-8: The Market for Radiation Detectors for Medical and Academic Laboratories
  • Exhibit 7-9: The Market for Radiation Detectors for Domestic Security
  • Exhibit 7-10: The Market for Radiation Detectors for Military Applications
  • Exhibit 7-11: The Market for Medical SPECT Detectors
  • Exhibit 7-12: The Market for Medical PET Detectors
  • Exhibit 7-13: The Market for Radiotherapy Detectors
  • Exhibit 7-14: The Market for Medical Radiography Detectors
  • Exhibit 7-15: The Market for Medical Computed Tomography and Mammography Radiography Detectors
  • Exhibit 7-16: The Market for Radiation Detectors for Medical Imaging
  • Exhibit 7-17: The Market for Radiation Monitoring Equipment, by Type
  • Exhibit 7-18: Market for Radiation Monitoring Equipment-Specialty Detectors
  • Exhibit 7-19: Revenue from Radiation Systems, by Geographical Region, $ Millions
  • Exhibit 7-20: The Market for Radiation Detection Equipment, by Sector and Geography-Security and Safety Detectors, Small Specialty Detectors
Back to Top