表紙
市場調査レポート

放射線検出材料市場:2015-2022年

Radiation Detection Materials Markets: 2015-2022

発行 n-tech Research, a NanoMarkets company 商品コード 196780
出版日 ページ情報 英文 127 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
放射線検出材料市場:2015-2022年 Radiation Detection Materials Markets: 2015-2022
出版日: 2015年02月26日 ページ情報: 英文 127 Pages
概要

放射線検出の特に国土安全保障や医療の分野での需要増により、適正な価格で十分な成果を得られる放射線検出材料へのニーズが高まっています。セキュリティおよび軍事用途のモバイル型放射線検出への関心の拡大から、検出器のサイズと重量を抑えながら自然放射線と危険のある放射線源とを確実に区別できる材料により重点が置かれています。

当レポートでは、放射線検出の各種材料の市場について調査し、放射線検出のための各種材料の種類と概要、放射線検出材料のサプライチェーン、主な用途・導入先、材料タイプ・用途・地域別の8カ年予測などをまとめています。

エグゼクティブサマリー

  • セキュリティ&ヘルスのための放射線検出
  • 放射線検出材料市場における新材料の影響
  • 注目の企業
  • サマリー:放射線検出材料の8カ年予測

第1章 イントロダクション

  • 本書の背景
  • 調査目的および調査範囲
  • 調査手法
  • 本書の構成

第2章 放射線検出の材料における動向

  • 従来の材料からの移行
    • ヨウ化ナトリウムの将来性
    • プラスチックシンチレーション材料の利用
    • 高コストのHPGe
  • 新しいシンチレーション材料の商品化
    • ヨウ化ストロンチウムベースの材料
    • CLYC (Cs2LiYCl6) と関連材料
    • レアアースメタルベースの材料
    • フッ化物・酸化物・ケイ酸塩
    • ナノマテリアル・その他の次世代材料
  • 代替半導体放射線検出材料の開発
    • テルル化カドミウム亜鉛 (CZT) と関連材料
    • その他の化合物半導体
    • 開発中の代替材料
  • 中性子検出のためのヘリウム3の代替
    • ホウ素ベースの材料
    • リチウムベースの材料
  • 放射線検出材料のサプライチェーン
    • 原材料の需要・供給の検出材料市場への影響
    • 材料動向の原材料サプライヤーへの影響
    • 蛍光体結晶製造業者のための有効戦略
    • 材料の変更の機器・デバイス製造業者への影響
  • 本章のまとめ

第3章 放射線検出材料の主な用途

  • 国土安全保障
    • 貨物スキャン
    • 入国港・都市の安全
  • 軍事
    • ポータブル検出器
    • 核兵器
  • 原子力プラント
  • 医用画像
    • PET・SPECTスキャン
    • X線画像
    • 放射線治療
  • セキュリティ&ヘルスに関連する産業用途
  • 石油・鉱業
  • 科学研究上のニーズ
  • 本章のまとめ

第4章 放射線検出材料の8カ年予測

  • 予測手法
  • シンチレーション材料の予測
  • 半導体材料の予測
  • 中性子検出材料の予測
  • 放射線検出用途別の予測
  • 地域別の予測

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次
Product Code: Nano-817

Growth in the demand for radiation detection, especially for homeland security and medical applications, is driving the need for radiation detection materials that can provide sufficient performance at the right price. Increased interest in mobile radiation detection for security and military applications places more emphasis on materials that can reliably distinguish between naturally occurring and potentially threatening sources of radiation while using relatively thin crystals in order to limit size and weight of the detectors. At the same time, certain applications demand larger crystals, putting pressure on suppliers to grow defect-free large diameter crystals at a cost the market will accept.

This report provides insight into the status of a wide range of materials for detection of gamma rays, x-rays and neutrons. Materials that have been used for decades for gamma and x-ray detection are not going away, but replacement materials are on the horizon. Restrictions on the use of helium-3 continue to drive a need for other materials for neutron detection. Materials such as CLYC (Cs2LiYCl6), that can detect both gamma rays and neutrons, are very compelling and have received a lot of attention lately. We discuss the commercial prospects of CLYC and other materials that have the potential to change the radiation detection materials industry. Notable materials include strontium iodide and cadmium zinc telluride (CZT).

Much of the focus is on the companies that make scintillation and semiconductor materials for radiation detection, and this report covers suppliers that are at the forefront of developing new materials and manufacturing processes, including Acrorad, CapeSym, Hellma Materials, Hilger Crystals, Redlen Technologies, RMD Instruments, Saint-Gobain, and others. We also discuss companies upstream and downstream of the crystal suppliers and how changes in detection materials affect their businesses.

While homeland security and medical imaging are the primary applications that materials suppliers are targeting, other applications have a significant effect on the development of this industry. This report discusses the role of radiation detection materials in the nuclear power industry and also covers various industrial and scientific applications that use nontrivial quantities of radiation detection materials.

This report includes granular eight-year forecasts of radiation detection materials, looking both at volume of material required and revenues. Forecasts are broken down by material type, application, and geography.

Table of Contents

EXECUTIVE SUMMARY

  • E.1. Radiation Detection for Security and Health
    • E.1.1. How Radiation Detection Materials Can Improve Homeland Security
    • E.1.2. Addressing Nuclear Power and Nuclear Weapons
    • E.1.3. Accelerating Development of Medical Imaging and the Need for New Materials
    • E.1.4. Industrial Applications Impacting Health and Safety
  • E.2. Effect of Newer Materials on the Radiation Detection Materials Market
    • E.2.1. Continuing Efforts to Replace Helium-3 for Neutron Detection
    • E.2.2. Improving Performance and Reducing Cost of Scintillation and Semiconductor Materials
  • E.3. Key Firms to Watch
    • E.3.1. Scintillation Materials Suppliers
    • E.3.2. Semiconductor Materials Suppliers
    • E.3.3. Companies Further up the Supply Chain
    • E.3.4. The Role of Governments and National Laboratories
  • E.4. Summary of Eight-Year Forecasts for Radiation Detection Materials
    • E.4.1. Summary by Material Class
    • E.4.2. Summary by Application

CHAPTER ONE: INTRODUCTION

  • 1.1. Background to this Report
    • 1.1.1. Changes since Last Report
    • 1.1.2. Materials for Detecting Gamma Rays
    • 1.1.3. Materials for Neutron Detection
    • 1.1.4. Homeland Security and Medical Imaging Markets Driving Materials Requirements
  • 1.2. Objectives and Scope of this Report
  • 1.3. Methodology of this Report
  • 1.4. Plan of this Report

CHAPTER TWO: TRENDS IN MATERIALS FOR RADIATION DETECTION

  • 2.1. Shifting Away from Legacy Materials
    • 2.1.1. The Future of Sodium Iodide
    • 2.1.2. Use of Plastic Scintillation Materials
    • 2.1.3. The High Cost of HPGe
  • 2.2. Commercialization of Newer Scintillation Materials
    • 2.2.1. Strontium Iodide-based Materials
    • 2.2.2. CLYC (Cs2LiYCl6) and Related Materials
    • 2.2.3. Materials Based on Rare Earth Metals
    • 2.2.4. Fluorides, Oxides, and Silicates
    • 2.2.5. Nanomaterials and other Next Generation Alternatives
  • 2.3. Development of Alternative Semiconductor Radiation Detection Materials
    • 2.3.1. Cadmium Zinc Telluride (CZT) and Related Materials
    • 2.3.2. Other Compound Semiconductors
    • 2.3.3. Alternative Materials in Development
  • 2.4. Replacing 3-Helium for Neutron Detection
    • 2.4.1. Boron-based Materials
    • 2.4.2. Lithium-based Materials
  • 2.5. The Radiation Detection Materials Supply Chain
    • 2.5.1. Effect of Raw Material Supply and Demand on the Market for Detection Materials
    • 2.5.2. Impact of Materials Trends on Raw Materials Suppliers
    • 2.5.3. Effective Strategies for Scintillator Crystal Manufacturers
    • 2.5.4. How Materials Changes Impact Equipment and Device Manufacturers
  • 2.6. Key Points from this Chapter

CHAPTER THREE: KEY APPLICATIONS FOR RADIATION DETECTION MATERIALS

  • 3.1. Homeland Security
    • 3.1.1. Cargo Scanning
    • 3.1.2. Securing Ports of Entry and Cities
  • 3.2. Military Applications
    • 3.2.1. Portable Detectors
    • 3.2.2. Nuclear Weapons
  • 3.3. Nuclear Power Plants
  • 3.4. Medical Imaging
    • 3.4.1. PET and SPECT Scanning
    • 3.4.2. X-Ray Imaging
    • 3.4.3. Radiation Therapy
  • 3.5. Industrial Applications Related to Health and Safety
  • 3.6. Oil and Mining Industry
  • 3.7. Scientific and Research Needs
  • 3.8. Key Points from this Chapter

CHAPTER FOUR: EIGHT-YEAR FORECASTS FOR RADIATION DETECTION MATERIALS

  • 4.1. Forecasting Methodology
  • 4.2. Forecasts of Scintillation Materials
  • 4.3. Forecasts of Semiconductor Materials
  • 4.4. Forecasts of Neutron Detection Materials
  • 4.5. Forecasts by Radiation Detection Application
  • 4.6. Forecasts by Geography
Back to Top