MEMS Accelerometer and Gyroscope Market - Growth, Trends, COVID-19 Impact, and Forecasts (2021 - 2026)

出版日: | 発行: Mordor Intelligence Pvt Ltd | ページ情報: 英文 110 Pages | 納期: 2-3営業日

価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=110.33円
出版日: 2021年01月01日
発行: Mordor Intelligence Pvt Ltd
ページ情報: 英文 110 Pages
納期: 2-3営業日
  • 全表示
  • 概要
  • 目次



第1章 イントロダクション

  • 調査成果
  • 調査の前提条件
  • 調査範囲

第2章 調査方法

第3章 エグゼクティブサマリー

第4章 市場力学

  • 市場概況
  • 市場の成長および阻害要因の概要
  • 成長要因
  • 阻害要因
  • 産業の魅力:ポーターのファイブフォース分析
    • 新規参入の脅威
    • バイヤー/消費者の交渉力
    • サプライヤーの交渉力
    • 代替製品の脅威
    • 業界内の競争

第5章 市場セグメント

  • 用途別
    • 家電
    • 自動車
    • 航空宇宙・防衛
    • その他
  • 地域別
    • 北米
    • 欧州
    • アジア太平洋地域
    • その他

第6章 競合情勢

  • 企業プロファイル
    • Analog Devices Inc.
    • Bosch Sensortec GmbH
    • Honeywell International Inc.
    • Microchip Technology, Inc.
    • 株式会社村田製作所
    • NXP Semiconductors
    • STMicroelectronics N.V.
    • InvenSense Inc. (TDK)
    • KIONIX Inc. (ROHM)
    • Northrop Grumman Litef Gmbh

第7章 投資分析

第8章 市場機会および今後の動向

Product Code: 66913

The MEMS Accelerometer and Gyroscope Market is expected to register a CAGR of 9.73% over the forecast period from 2021 to 2026. Microelectromechanical system (MEMS) sensors offer several advantages, such as accuracy and reliability, and the potential to make smaller electronic devices. As a result, they have gained significant traction in the past few years. Accelerometers and gyroscopes are the MEMS sensors of choice for providing acceleration and rotational information in drones, cellphones, automobiles, airplanes. Further, industrial automation and demand for miniaturized consumer devices, such as wearables and IoT-connected devices, among others, across regions, are among the significant factors driving the MEMS Accelerometer and Gyroscope market.

  • The accelerometer and gyroscope individually provide substantial advantages to the navigation system; however, both have a scope of the data uncertainty. Preferably both of these sensors collecting data on the same phenomena and merging their output data is an appropriate option in various applications. This can be efficient with a sensor fusion strategy that combines sensory data from disparate sources and generate information that has less uncertainty. When connecting the 3D accelerometer and 3D gyroscope data, it is most useful to have both functions coexist in the same device. An example of such a device is the STMicroelectronics LSM6DS3HTR 3D accelerometer and 3D gyroscope. Appropriate applications include a pedometer, motion tracking, gesture detection, and tilt functions.
  • Further, the use of accelerometers and gyroscope is increasing due to their applications in various configurations in the military. The global military spending remained very high at USD 1917 billion (SIPRI) in 2019, and as a result of improved expenditure, military organizations are poised to use the most advanced technology. The United States has the most significant spending in the military and defense. The country focuses on precision-guided munitions (PGMs), such as laser-guided bombs and cruise missiles, that have become the weapons of choice for the US military.
  • Further, wider adoption of MEMS sensors in the IoT is expected to drive the integration of MEMS and low - power ASICs, for processing and connectivity (multi-functional integrated devices, combined at the wafer level, for instance, a combination of accelerometer and gyroscope, together with a magnetometer, pressure sensor, and ASIC, in a system -in -package). This trend might pose threats to the demand for discrete MEMS sensors. As the modern embedded design requires sensors and wireless connectivity, this is accelerating based on the breadth of wireless standards being integrated into products. Currently, players are bringing the fundamental sensor and wireless building blocks in an excellent package for accelerated design
  • Further, the impact of COVID -19 shows a significant fall in the market growth, mostly in the consumer and automotive sector due to the lockdown and massive disruption in supply chain movement. However, it is potentially providing growth in the wearable market sector. A smart wearable is mostly associated with giving human health status. The intelligent ring startup Oura is working with the University of California, San Francisco (UCSF), to manufacture a smart ring that can monitor elements like body temperature and can also conduct a daily symptom survey. This helps users in detecting the early onset of COVID -19. The Oura ring features am infrared LEDs, an accelerometer, three temperature sensors, and a gyroscope and are capable of tracking vitals like the heart - rate and the respiration -rate via the finger.

Key Market Trends

Automotive is Expected to Hold Significant Share

  • The MEMS accelerometer and gyroscope play an essential role in improving the safety features of vehicles. With the evolution of autonomous driving, the demand for these sensors is expected to increase multiple -fold for safety -based applications and create opportunities in the market. In March 2019, the European Commission announced a revision of the General Safety Regulations to make autonomous safety technologies a mandatory requirement for vehicles manufactured in Europe, in a bid to bring down accident levels in the region. Stringent regulations are pushing the automotive vendors to implement the latest MEMS sensor-based systems. This is creating opportunities for the market.
  • Further, crash sensing for airbag control is driving the demand for inertial MEMS sensors. Companies, such as Analog Devices, Bosch, and STMicroelectronics, among others, have been instrumental in developing MEMS-based accelerometer sensors specified for a temperature range extending from -40 C to +125 C, which is suitable for enabling passive safety during the crash. Companies, such as STMicroelectronics, offer automotive-grade MEMS sensors, the ASM330LHH, to meet the current sensor demands from modern cars. The sensor integrates a 3 D digital accelerometer, gyroscope, and hardware to address automotive in non -safety applications
  • Furthermore, currently, vehicles are usually positioned using GPS/GNSS. However, in practical applications, GNSS satellite signals are not wholly reliable in concentrated urban areas with high buildings and overpasses. Besides, basement parking lots, tunnels, dense trees, and other sheltered environments can reduce positioning accuracy. Therefore to improve the efficiency of navigation, Dead Reckoning navigation becomes necessary. In context to Dead Reckoning navigation, in January 2020, Aceinna launched its OpenRTK330 L at CES 2020, a low -cost, high -performance triple-band RTK/GNSS receiver with built-in triple-redundant inertial sensors. It is designed to replace the expensive RTK/INS systems currently used in autonomous systems
  • A player such as Locosys Technology Inc. provides Locosys MC -1612 -DG, a single -band multi-system with an ARM-based processor that supports GPS, GLONASS, Galileo, QZSS, and SBAS. The embedded micro-electro-mechanical systems (MEMS) sensor is equipped with dead -reckoning software and provides a six-axis accelerometer and gyroscope data. The dead -reckoning features to boost accuracy with the software filling the gaps in the GNSS conditions such as urban canyons, tunnels, or parking garages.

North America is Expected to Hold Major Share

  • North America accounts for significant market growth due to its various applications in the healthcare, automotive, and defense sectors. With the high use of MEMS sensors in the advanced healthcare equipment such as Bio-MEMS is expected to drive the demand for MEMS sensors in the region. Government entities in the region are also investing extensively in the manufacturing facilities of the MEMS-based microfluidic chips.
  • Moreover, according to the National Health Expenditure Accounts (NHEA), the healthcare spending in the United States grew by over 4.6% in 2018 and has reached USD 3.6 trillion or USD 11,172 per person accounting for 17.7% of its GDP indicating investment in addressing these trend and is anticipated to complement the MEMS sensor market demand.
  • For instance, in June 2019, NASA invested USD 125,000 as phase-I funding for the project by Techshot to develop in-Space manufacturing of microfluidic chips for use in biological research aboard the International Space Station. Moreover, key MEMS sensor vendors in the region are also adopting product innovation strategies to cater to advanced offerings across the industries.
  • Stringent government regulations regarding passenger safety and significantly growing automotive and aerospace industries are driving the MEMS accelerometer and gyroscope market in North America. The emergence of information technology (IT), coupled with the increased usage of IoT across a wide range of manufacturing, industrial, and automotive applications, has added a new dimension to conducting business operations in the region.
  • Further, for seizing the growth opportunities, the MEMS manufacturers in the region are actively seeking production expansions. For instance, in December 2019, equipment and process solutions provider - SUSS MicroTec announced to enter a partnership BRIDG to invest in focused production process technologies, advanced system integration, and 200mm MEMS fabrication to advancing next-generation nanoscale technology.

Competitive Landscape

The MEMS Accelerometer and Gyroscope is moderately fragmented owing to the presence of regional as well as global tech giants. The firms are focusing on strengthening and establishing their product portfolio with the adoption of various strategies, including innovative product developments, mergers, partnerships, and acquisitions, etc. to gain a competitive edge over other players.

  • June 2020 - Bosch Sensortec announced that it has been developing sensor software solutions in collaboration with Qualcomm Technologies, through its Qualcomm Platform Solutions Ecosystem program. First developments include an angle detection algorithm for Bosch Sensortec's IMUs (Inertial Measurement Units), allowing the detection of various states in foldable smartphones. IMUs include BMI260, which combines a self-calibrating gyroscope with an accelerometer in one system-in-package (SiP).
  • June 2020 - Analog Devices, Inc. announced its high-precision inertial measurement unit (IMU) had been selected by CHC Navigation to enable its next-generation, real-time kinematic (RTK) rover receiver, which can achieve high-precision and high-efficiency positioning and measurement at any position through the combination of satellite and inertial positioning. ADI's IMU combines the precision gyroscope and accelerometer on multiple axes, which can reliably sense and process data with numerous degrees of freedom even in extremely complicated applications and dynamic conditions.

Reasons to Purchase this report:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support



  • 1.1 Study Assumptions & Market Definition
  • 1.2 Scope of the Study




  • 4.1 Market Overview (Assessment of Covid-19 Impact)
  • 4.2 Industry Value Chain Analysis
  • 4.3 Industry Attractiveness - Porter's Five Force Analysis
    • 4.3.1 Bargaining Power of Suppliers
    • 4.3.2 Bargaining Power of Consumers
    • 4.3.3 Threat of New Entrants
    • 4.3.4 Threat of Substitute Products
    • 4.3.5 Intensity of Competitive Rivalry


  • 5.1 Market Drivers
    • 5.1.1 Increased Defense Expenditure
    • 5.1.2 Adoption of Automation in Industries and Homes
  • 5.2 Market Restraints
    • 5.2.1 High Up-front Adoption Costs


  • 6.1 By Application
    • 6.1.1 Consumer Electronics
    • 6.1.2 Automotive
    • 6.1.3 Aerospace & Defense
    • 6.1.4 Other Applications
  • 6.2 Geography
    • 6.2.1 North America
    • 6.2.2 Europe
    • 6.2.3 Asia Pacific
    • 6.2.4 Rest of the World


  • 7.1 Company Profiles
    • 7.1.1 Analog Devices Inc.
    • 7.1.2 Bosch Sensortec GmbH
    • 7.1.3 Honeywell International Inc.
    • 7.1.4 Microchip Technology, Inc.
    • 7.1.5 Murata Manufacturing Co., Ltd.
    • 7.1.6 NXP Semiconductors N.V.
    • 7.1.7 STMicroelectronics N.V.
    • 7.1.8 InvenSense Inc. (TDK)
    • 7.1.9 KIONIX Inc. (ROHM)
    • 7.1.10 Northrop Grumman Litef GmbH