表紙:デジタルツインおよび遠隔操作市場:技術、ソリューション、セグメント(企業、産業、政府)、業界別(2021年~2026年)
市場調査レポート
商品コード
1019430

デジタルツインおよび遠隔操作市場:技術、ソリューション、セグメント(企業、産業、政府)、業界別(2021年~2026年)

Digital Twin and Teleoperations Market by Technology, Solutions, Segments (Enterprise, Industrial, and Government), and Industry Verticals 2021 - 2026

出版日: | 発行: Mind Commerce | ページ情報: 英文 268 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=115.27円
デジタルツインおよび遠隔操作市場:技術、ソリューション、セグメント(企業、産業、政府)、業界別(2021年~2026年)
出版日: 2021年07月19日
発行: Mind Commerce
ページ情報: 英文 268 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

概要

デジタルツインとは、IoTプラットフォームやソフトウェアを活用して、物理的な物体や資産をデジタルで表現することで、物理的な世界とデジタルの世界をマッピングすることを指します。物理的なオブジェクトのデジタルツインは、その物理的な状態や処分など、資産に関する情報を提供することができます。デジタルツインソリューションは、生産のための設計やシミュレーションから、運用環境での観察や制御まで、さまざまな目的に活用することができます。また、デジタルツインシステムは、人工知能(AI)を活用して、マシンベースの学習、分析、その他のAIベースのデータ指向プロセスを実現します。デジタルツインは、AIとIoTの融合により、IoT(Artificial Intelligence of Things:モノの人工知能)の威力を示す好例といえます。

2026年までに、IoTプラットフォームの88%が何らかのデジタルツイン機能を持つようになります。また、デジタルツインは、2025年までにIoTアプリケーションを実現するための標準的な機能となると考えられています。ソフトウェア企業の94%以上が、デジタルツイン機能を備えたIoT APIやプラットフォーム統合の必要性を認識しています。幅広い産業分野で35%を超える経営者がデジタルツインのメリットを理解しており、そのうち72%が2026年までに自社の業務に取り入れることを計画しています。

遠隔操作とは、離れた場所から機器や機械を操作することで、遠隔操作と遠隔ロボットは、ブロードバンド通信、センサー、M2M(Machine to Machine)通信、さまざまなIoT技術などのICTインフラによって支えられています。

当レポートでは、デジタルツインおよび遠隔操作市場を調査し、市場および技術の概要、インダストリー4.0時代における役割の評価、市場動向、市場予測、主要企業のプロファイルなどをまとめています。

調査対象企業

  • ABB Group
  • AGT Robotics
  • Allerin Tech Pvt. Ltd.
  • Altair Engineering, Inc.
  • Amazon
  • ANSYS
  • AppFolio
  • ARM Holdings
  • Aucotec AG
  • Autodesk Inc.
  • Bentley Systems, Incorporated
  • Bosch
  • Buildium
  • CADFEM GmbH
  • Calvary Robotics
  • Cisco Systems
  • Cityzenith
  • CloudMinds
  • Console
  • Contiki
  • Cosmo Tech
  • Dassault Systems
  • Digi International
  • Digital Twin Consortium
  • DNV GL
  • DXC Technology
  • Eclipse Foundation
  • Ekso Bionics
  • Emerson
  • Emesent
  • Entrata
  • Faststream Technologies
  • FEINGUSS BLANK GmbH
  • Flowserve
  • Forward Networks
  • General Electric
  • Google
  • H Robotics
  • Hitachi Ltd.
  • Honeywell
  • HP
  • IBM
  • Intellias
  • Intuitive Surgical
  • Invicara
  • iRobot
  • KBMax
  • Kuka AG
  • Lanner Electronics
  • London Computer Systems
  • Microsoft
  • MRI Software
  • Nachi Fujikoshi
  • National Instruments
  • NavVis
  • Omron Corporation
  • Oracle
  • PETRA Data Science
  • Pratiti Technologies
  • Prodea System Inc.,
  • Property Boulevard
  • PTC
  • QiO Technologies
  • RealPage
  • Rockend
  • SAP
  • Schneider
  • SenSat
  • Siemens
  • Sight Machine Inc.
  • Simplifa GmbH
  • Softweb Solutions Inc.
  • Sogeti Group
  • SWIM.AI
  • Synavision
  • Sysmex Corporation
  • TIBCO Software
  • TOPS Software
  • Toshiba Corporation
  • UrsaLeo
  • Virtalis Limited
  • Visualiz
  • Wipro Limited
  • XenonStack
  • Yardi Systems
  • Zest Labs

目次

デジタルツイン市場:技術・ツイニングタイプ・サイバーフィジカルソリューション・ユースケース・用途別

第1章 エグゼクティブサマリー

第2章 イントロダクション

  • 概要
    • デジタルツインを理解する
    • コグニティブデジタルツイニング
    • デジタルスレッド
    • センサーとシミュレーションの収束
    • IoT API
    • ソフトウェアモジュールと要素
    • デジタルツインの種類
    • デジタルツインワークプロセス
    • デジタルツインニングの役割と重要性
  • 関連技術とデジタルツインへの影響
    • インダストリアルインターネットとインダストリー4.0
    • ペアリングテクノロジー
    • サイバーから物理システムへ
    • AR、VR、複合現実
    • 人工知能と機械学習
    • アディティブマニュファクチャリングと3Dプリンティング
  • 潜在的なアプリケーションとアウトカム分析
    • メンテナンス、修理、オーバーホール操作
    • 消費者資産のデジタルアバター
    • パフォーマンス/サービスの監視
    • 検査と修理
    • 予知保全
    • 製品の設計と開発
    • 複合組立/製造
    • 潜在的なビジネス成果
  • デジタルツインサービスエコシステム
    • 産業用IoT
    • コンシューマーIoT
    • 産業の発展
    • サービスとしてのデジタルツインニング

第3章 デジタルツイン企業の評価

  • ABB
  • Allerin Tech Pvt. Ltd.
  • Altair Engineering, Inc.
  • Amazon Web Services
  • ANSYS
  • Aucotec AG
  • Autodesk Inc.
  • Bentley Systems, Incorporated
  • CADFEM GmbH
  • Cisco Systems
  • Cityzenith
  • Cosmo Tech
  • Dassault Systems
  • Digital Twin Consortium
  • Digital Twin Technologies
  • DNV GL
  • DXC Technology
  • Eclipse Foundation
  • Emerson
  • Emesent
  • Faststream Technologies
  • FEINGUSS BLANK GmbH
  • Flowserve
  • Forward Networks
  • General Electric
  • Google
  • Hitachi Ltd.
  • Honeywell
  • HP
  • IBM
  • Industrial Internet Consortium
  • Intellias
  • Invicara
  • KBMax
  • Lanner Electronics
  • Microsoft
  • National Instruments
  • NavVis
  • Oracle
  • PETRA Data Science
  • Physical Web
  • Pratiti Technologies
  • Prodea System Inc.,
  • PTC
  • QiO Technologies
  • Robert Bosch
  • SAP
  • Schneider
  • SenSat
  • Siemens
  • Sight Machine Inc.
  • Simplifa GmbH
  • Softweb Solutions Inc.
  • Sogeti Group
  • SWIM.AI
  • Synavision
  • Sysmex Corporation
  • TIBCO Software
  • Toshiba Corporation
  • UrsaLeo
  • Virtalis Limited
  • Visualiz
  • Wipro Limited
  • XenonStack
  • Zest Labs

第4章 デジタルツイン市場の分析と予測

  • 世界のデジタルツイン市場
  • ツイニングタイプ別
  • 用途別
  • 業界別
  • 地域別
    • 北米
    • 南米
    • 欧州
    • アジア太平洋地域
    • 中東・アフリカ

第5章 結論・提言

遠隔操作およびテレロボット市場:企業・産業オートメーション向け技術、ソリューション、用途別

第1章 エグゼクティブサマリー

第2章 イントロダクション

  • 遠隔操作とテレロボット
    • テレプレゼンス
    • テレマニピュレーターと協働ロボット
  • 遠隔操作制御スキーム
  • バーチャルリアリティ・テレプレゼンス
  • 遠隔操作無人探査機
  • 産業用IoTの採用・生産性・経済的貢献
  • スマートファクトリー・インダストリアルオートメーション・インダストリー4.0
  • 労働力の増強
  • ハイブリッドエンタープライズ
  • ドローンロジスティクス
  • コロナウイルスの影響と遠隔操作の取り込み
  • 市場促進要因・課題
  • バリューチェーン分析
    • ハードウェアプロバイダー
    • 機器プロバイダー
    • プラットフォームプロバイダー
    • ソフトウェア・サービスプロバイダー

第3章 テクノロジーとアプリケーションの分析

  • インフラテクノロジー
    • 接続/成形機
    • テレロボット/テレマニピュレーター
    • HMIコンピューティング/ビデオ会議デバイス
    • サーバーとストレージ
    • テレメンテナンスステーション
    • ハードウェア機器
  • ソフトウェアテクノロジー
    • デジタルツイン・制御
    • 会議・コミュニケーション
    • ネットワーク管理・セキュリティ
    • ID・認証
    • リモートモニタリング・分析
    • リアルタイムストリーミング
    • AIソフトウェア
  • 潜在的なアプリケーション分析
    • ビデオ会議
    • テレプレゼンス
    • 生放送
    • 遠隔手術・手術
    • ドローンロジスティクス
    • パイプライン検査
    • 広告・販売
    • 危険環境
    • 海中作業
    • コミュニティ構築
    • 宇宙探査
  • 使用事例の分析
    • 製造
    • ヘルスケア・医療
    • 自動車
    • ロジスティクス
    • 教育
    • エンターテイメント
    • 船舶
    • 石油・ガス・鉱業
    • 広告
    • 農業
    • 空間管理
  • 接続性とクラウド展開
  • 二国間制御と触覚フィードバック
    • 片側モデル/両側モデルのパフォーマンス
    • 触覚ロボティクスと人間のような器用さ
    • テレロボティックインターフェース
  • ITとOT間のコンバージェンス
  • マルチアクセスエッジコンピューティングと5Gネットワーク
  • 産業プロシューマー
  • コネクテッドサービス・遠隔操作

第4章 企業分析

  • AppFolio
  • ABB Group
  • AGT Robotics
  • ARM Holdings
  • Bosch
  • Buildium
  • Console
  • Calvary Robotics
  • Cisco
  • CloudMinds
  • Contiki
  • H Robotics
  • Digi International
  • Entrata
  • Ekso Bionics
  • General Electric
  • Google
  • IBM
  • iRobot
  • Intuitive Surgical
  • Kuka AG
  • London Computer Systems
  • MRI Software
  • Nachi Fujikoshi
  • Omron Corporation
  • Property Boulevard
  • RealPage
  • Rockend
  • TOPS Software
  • Yardi Systems

第5章 遠隔操作および遠隔ロボット市場の分析と予測

  • 世界のIIoT遠隔操作および遠隔ロボット市場:全体
    • 統合されたIIoT遠隔操作およびテレロボティクス市場
    • セグメント別
    • アプリケーション別
    • 業界別
    • 展開タイプ別
    • コネクティビティ別
  • 世界のIIoT遠隔操作および遠隔ロボット市場:地域別
    • 北米
    • 欧州
    • アジア太平洋地域
    • 中東
    • ラテンアメリカ

第6章 結論・提言

目次

Overview:

This research evaluates digital twin technology, solutions, use cases, and leading company efforts in terms of R&D and early deployments. It assesses the digital twin product and service ecosystem including application development and operations. It also analyzes technologies supporting and benefiting from digital twins. It also provides detailed forecasts covering digital twins in many market segments and use cases including manufacturing simulations, predictive analytics, and more.

This research also evaluates the emerging role of teleoperation and telerobotics in the era of Industry 4.0. It analyzes the impact of teleoperation and telerobotics solutions in different industry verticals and technology sectors. It also provides market forecasts for IIoT teleoperation and telerobotics systems, services, and solutions. It also evaluates the role of digital twin technology in teleoperation and telerobotics.

Select Research Findings:

  • Up to 88% of all IoT Platforms will contain some form of digit twins capability by 2026
  • Digital twins will become standard feature/functionality for IoT application enablement by 2025
  • Over 94% of software player recognize the need for IoT APIs and platform integration with digital twins functionality
  • Over 35% of executives across a broad spectrum of industrial verticals understand the benefits of digital twins and 72% of them plan to incorporate within their operations by 2026

Digital twinning refers to mapping the physical world to the digital world in which Internet of Things (IoT) platforms and software are leveraged to create a digital representation of a physical object or asset. The digital twin of a physical object can provide information about the asset such as its physical state and disposition. Accordingly, digital twins represent a form of physical-to-cyber convergence.

Digital twin solutions can be leveraged for many purposes ranging from design and simulations for production to observation and control in an operational environment. Digital twin systems also rely upon Artificial Intelligence (AI) for machine-based learning, analytics, and other AI-based, data-oriented processes. Accordingly, digital twin solutions are a good example of the power of the Artificial Intelligence of Things (IoT) as they leverage the convergence of AI and IoT.

Digital Twin Technology

Digital twin technology represents software that replicates physical machines enabling remote control and operation. Digital twinning enables a cyber object to replicate a real thing in both form and function, allowing control of real things (e.g. things in the real world such as a piece of equipment) by manipulating digital objects in a software-constructed world.

The three primary scenarios for digital twin technology include:

  • 1. IoT Virtual-to-Real (V2R): Scenario in which virtual objects that can be provisioned and administered to interface with real objects, which will be necessary for many purposes, including monitoring and control.
  • 2. IoT Real-to-Virtual (R2V): Scenario in which real-objects provide feedback, alerts, and even control of virtual objects (software programs via Software Defined Networks) and platforms (hardware and software put in place to orchestrate IoT networks and assets).
  • 3. IoT Virtual-to-Virtual (V2V): Scenario in which virtual objects are involved in simulation and testing for IoT networks, including end-nodes and assets. IoT is new, and potentially dangerous (e.g. control and security issues), necessitating platforms for IoT V2V.

The above scenarios will be employed singularly and in combination across different industry verticals in accordance with their overall IoT operational readiness as well as physical-to-cyber integration on a product-by-product and/or service-by-service basis. IoT enabled digital twin technology will facilitate dramatic changes in a wide range of consumer, enterprise, and industrial products and services. Impacted areas cover a wide range including everything from marketing and advertising to operations and product lifecycle management.

Teleoperations Technology

Teleoperation represents the ability to operate equipment or a machine from a distance. A specific form of teleoperation involving remote control of a robot from a distance is referred to as telerobotics. Teleoperation and telerobotics are both supported by ICT infrastructure including broadband communications, sensors, machine to machine (M2M) communications, and various IoT technologies.

Enhancements in wireless broadband are untethering teleoperation. Prior to 5G and Mobile Edge Computing (MEC), Teleoperation is largely relegated to fixed communications connections. 5G and MEC will enable Teleoperation anywhere there is 5G coverage, enabling many new consumer and industrial automation scenarios involving robotics.

Digital Twin and Teleoperation Solutions

There are many potential use cases for digital twinning including monitoring, simulation, and remote control of physical assets with virtual objects. Solutions focus on the part, product, process, and system twinning. We see digital twinning playing a key role in many IoT operations processes including IoT application development, testing, and control. Digital twinning can be very useful for modeling and simulations of new systems such as IoT enabled process automation. For example, it may be leveraged to allow management to become more familiar and comfortable with IoT based apps for enterprise and industrial solutions.

Advanced IoT systems will utilize digital twin technology to enable next-generation teleoperation. The implementation of digital twins will also enable distributed remote control of assets, which will drive a market need for IoT identity management, authentication, and authorization. Due in part to the need to pull many different resources together, we see a developing Digital Twinning as a Service (DTaaS) marketplace. DTaaS solutions will be leveraged for many purposes including design, operations management, systems optimization, and more.

Research Benefits:

  • Digital Twin forecasts 2021 - 2026
  • Understand the different types of digital twins
  • Identify market challenges and opportunities for digital twin technology
  • Understand the role of digital twins in development, simulations, and PLM
  • Understand how virtual objects (software programs) function as an abstract of real-world things
  • Understand how virtual reality will support digital twins and vice versa for advanced simulations and control

Companies in Research:

  • ABB Group
  • AGT Robotics
  • Allerin Tech Pvt. Ltd.
  • Altair Engineering, Inc.
  • Amazon
  • ANSYS
  • AppFolio
  • ARM Holdings
  • Aucotec AG
  • Autodesk Inc.
  • Bentley Systems, Incorporated
  • Bosch
  • Buildium
  • CADFEM GmbH
  • Calvary Robotics
  • Cisco Systems
  • Cityzenith
  • CloudMinds
  • Console
  • Contiki
  • Cosmo Tech
  • Dassault Systems
  • Digi International
  • Digital Twin Consortium
  • DNV GL
  • DXC Technology
  • Eclipse Foundation
  • Ekso Bionics
  • Emerson
  • Emesent
  • Entrata
  • Faststream Technologies
  • FEINGUSS BLANK GmbH
  • Flowserve
  • Forward Networks
  • General Electric
  • Google
  • H Robotics
  • Hitachi Ltd.
  • Honeywell
  • HP
  • IBM
  • Intellias
  • Intuitive Surgical
  • Invicara
  • iRobot
  • KBMax
  • Kuka AG
  • Lanner Electronics
  • London Computer Systems
  • Microsoft
  • MRI Software
  • Nachi Fujikoshi
  • National Instruments
  • NavVis
  • Omron Corporation
  • Oracle
  • PETRA Data Science
  • Pratiti Technologies
  • Prodea System Inc.,
  • Property Boulevard
  • PTC
  • QiO Technologies
  • RealPage
  • Rockend
  • SAP
  • Schneider
  • SenSat
  • Siemens
  • Sight Machine Inc.
  • Simplifa GmbH
  • Softweb Solutions Inc.
  • Sogeti Group
  • SWIM.AI
  • Synavision
  • Sysmex Corporation
  • TIBCO Software
  • TOPS Software
  • Toshiba Corporation
  • UrsaLeo
  • Virtalis Limited
  • Visualiz
  • Wipro Limited
  • XenonStack
  • Yardi Systems
  • Zest Labs

Table of Contents

Digital Twins Market by Technology, Twinning Type, Cyber-to-Physical Solutions, Use Cases and Applications in Industry Verticals

1.0. Executive Summary

2.0. Introduction

  • 2.1. Overview
    • 2.1.1. Understanding Digital Twinning
    • 2.1.2. Cognitive Digital Twining
    • 2.1.3. Digital Thread
    • 2.1.4. Convergence of Sensors and Simulations
    • 2.1.5. IoT APIs
    • 2.1.6. Software Modules and Elements
    • 2.1.7. Types of Digital Twinning
    • 2.1.8. Digital Twinning Work Processes
    • 2.1.9. Role and Importance of Digital Twinning
  • 2.2. Related Technologies and Impact on Digital Twinning
    • 2.2.1. Industrial Internet and Industry 4.0
    • 2.2.2. Pairing Technology
    • 2.2.3. Cyber-to-Physical Systems
    • 2.2.4. AR, VR, and Mixed Reality
    • 2.2.5. Artificial Intelligence and Machine Learning
    • 2.2.6. Additive Manufacturing and 3D Printing
  • 2.3. Potential Application and Outcome Analysis
    • 2.3.1. Maintenance, Repair and Overhaul Operation
    • 2.3.2. Digital Avatar of Consumer Assets
    • 2.3.3. Performance/Service Monitoring
    • 2.3.4. Inspection and Repairs
    • 2.3.5. Predictive Maintenance
    • 2.3.6. Product Design & Development
    • 2.3.7. Composite Assembling/Manufacturing
    • 2.3.8. Potential Business Outcomes
  • 2.4. Digital Twinning Service Ecosystem
    • 2.4.1. Industrial IoT
    • 2.4.2. Consumer IoT
    • 2.4.3. Industry Development
    • 2.4.4. Digital Twinning as a Service

3.0. Digital Twins Company Assessment

  • 3.1. ABB
  • 3.2. Allerin Tech Pvt. Ltd.
  • 3.3. Altair Engineering, Inc.
  • 3.4. Amazon Web Services
  • 3.5. ANSYS
  • 3.6. Aucotec AG
  • 3.7. Autodesk Inc.
  • 3.8. Bentley Systems, Incorporated
  • 3.9. CADFEM GmbH
  • 3.10. Cisco Systems
  • 3.11. Cityzenith
  • 3.12. Cosmo Tech
  • 3.13. Dassault Systems
  • 3.14. Digital Twin Consortium
  • 3.15. Digital Twin Technologies
  • 3.16. DNV GL
  • 3.17. DXC Technology
  • 3.18. Eclipse Foundation
  • 3.19. Emerson
  • 3.20. Emesent
  • 3.21. Faststream Technologies
  • 3.22. FEINGUSS BLANK GmbH
  • 3.23. Flowserve
  • 3.24. Forward Networks
  • 3.25. General Electric
  • 3.26. Google
  • 3.27. Hitachi Ltd.
  • 3.28. Honeywell
  • 3.29. HP
  • 3.30. IBM
  • 3.31. Industrial Internet Consortium
  • 3.32. Intellias
  • 3.33. Invicara
  • 3.34. KBMax
  • 3.35. Lanner Electronics
  • 3.36. Microsoft
  • 3.37. National Instruments
  • 3.38. NavVis
  • 3.39. Oracle
  • 3.40. PETRA Data Science
  • 3.41. Physical Web
  • 3.42. Pratiti Technologies
  • 3.43. Prodea System Inc.,
  • 3.44. PTC
  • 3.45. QiO Technologies
  • 3.46. Robert Bosch
  • 3.47. SAP
  • 3.48. Schneider
  • 3.49. SenSat
  • 3.50. Siemens
  • 3.51. Sight Machine Inc.
  • 3.52. Simplifa GmbH
  • 3.53. Softweb Solutions Inc.
  • 3.54. Sogeti Group
  • 3.55. SWIM.AI
  • 3.56. Synavision
  • 3.57. Sysmex Corporation
  • 3.58. TIBCO Software
  • 3.59. Toshiba Corporation
  • 3.60. UrsaLeo
  • 3.61. Virtalis Limited
  • 3.62. Visualiz
  • 3.63. Wipro Limited
  • 3.64. XenonStack
  • 3.65. Zest Labs

4.0. Digital Twins Market Analysis and Forecasts 2021 to 2026

  • 4.1. Global Digital Twins 2021-2026
  • 4.2. Digital Twins Market by Type of Twinning 2021-2026
  • 4.3. Digital Twins Applications 2021-2026
  • 4.4. Digital Twins by Industry 2021-2026
    • 4.4.1. Digital Twins in Manufacturing by Type 2021-2026
    • 4.4.2. Digital Twins in Smart City by Type 2021-2026
    • 4.4.3. Digital Twins in Automotive by Type 2021-2026
    • 4.4.4. Digital Twins in Healthcare by Type 2021-2026
    • 4.4.5. Digital Twins in Transport by Type 2021-2026
  • 4.5. Digital Twins by Region 2021-2026
    • 4.5.1. North America Digital Twins 2021-2026
    • 4.5.2. South America Digital Twins 2021-2026
    • 4.5.3. Europe Digital Twins 2021-2026
    • 4.5.4. APAC Digital Twins 2021-2026
    • 4.5.5. MEA Digital Twins 2021-2026

5.0. Conclusions and Recommendations

Figures

  • Figure 1: Digital Twinning Model
  • Figure 2: Building Blocks of Cognitive Digital Twinning
  • Figure 3: Digital Thread Model in Digital Manufacturing Transformation Processes
  • Figure 4: Example of Types of Digital Twinning
  • Figure 5: Industrial Internet Building Block and Digital Twinning
  • Figure 6: Additive Manufacturing Path and Goals
  • Figure 7: Digital Thread for Additive Manufacturing in AM Process
  • Figure 8: Data Fusion for MRO Operation
  • Figure 9: Composite Manufacturing Model
  • Figure 10: Digital Twinning Application and Outcomes
  • Figure 11: Global Digital Twins 2021-2026
  • Figure 12: Digital Twins Types 2021-2026
  • Figure 13: Digital Twins Applications 2021-2026
  • Figure 14: Digital Twins by Industry 2021-2026
  • Figure 15: Digital Twins in Manufacturing by Type 2021-2026
  • Figure 16: Digital Twins in Manufacturing by Application 2021-2026
  • Figure 17: Digital Twins in Smart City by Type 2021-2026
  • Figure 18: Digital Twins in Smart City by Application 2021-2026
  • Figure 19: Digital Twins in Automotive by Type 2021-2026
  • Figure 20: Digital Twins in Automotive by Application 2021-2026
  • Figure 21: Digital Twins in Healthcare by Type 2021-2026
  • Figure 22: Digital Twins in Healthcare by Application 2021-2026
  • Figure 23: Digital Twins in Transport by Type 2021-2026
  • Figure 24: Digital Twins in Transport by Application 2021-2026
  • Figure 25: Digital Twins by Region 2021-2026
  • Figure 26: North America Digital Twins by Country 2021-2026
  • Figure 27: North America Digital Twins by Industry 2021-2026
  • Figure 28: United States Digital Twins 2021-2026
  • Figure 29: Canada Digital Twins 2021-2026
  • Figure 30: Mexico Digital Twins 2021-2026
  • Figure 31: South America Digital Twins by Country 2021-2026
  • Figure 32: South America Digital Twins by Industry 2021-2026
  • Figure 33: Argentina Digital Twins 2021-2026
  • Figure 34: Brazil Digital Twins 2021-2026
  • Figure 35: Chile Digital Twins 2021-2026
  • Figure 36: Europe Digital Twins by Country 2021-2026
  • Figure 37: Europe Digital Twins by Industry 2021-2026
  • Figure 28: U.K. Digital Twins 2021-2026
  • Figure 39: Germany Digital Twins 2021-2026
  • Figure 40: France Digital Twins 2021-2026
  • Figure 41: Spain Digital Twins 2021-2026
  • Figure 42: Italy Digital Twins 2021-2026
  • Figure 43: Poland Digital Twins 2021-2026
  • Figure 44: Russia Digital Twins 2021-2026
  • Figure 45: APAC Digital Twins by Country 2021-2026
  • Figure 46: APAC Digital Twins by Industry 2021-2026
  • Figure 47: China Digital Twins 2021-2026
  • Figure 48: Japan Digital Twins 2021-2026
  • Figure 49: South Korea Digital Twins 2021-2026
  • Figure 50: Australia Digital Twins 2021-2026
  • Figure 51: India Digital Twins 2021-2026
  • Figure 52: MEA Digital Twins by Country 2021-2026
  • Figure 53: MEA Digital Twins by Industry 2021-2026
  • Figure 54: Qatar Digital Twins 2021-2026
  • Figure 55: Kuwait Digital Twins 2021-2026
  • Figure 56: Saudi Arabia Digital Twins 2021-2026
  • Figure 57: South Africa Digital Twins 2021-2026

Tables

  • Table 1: Global Digital Twins 2021-2026
  • Table 2: Digital Twins Market by Type of Twinning 2021-2026
  • Table 3: Digital Twins Applications 2021-2026
  • Table 4: Digital Twins by Industry 2021-2026
  • Table 5: Digital Twins in Manufacturing by Type 2021-2026
  • Table 6: Digital Twins in Manufacturing by Application 2021-2026
  • Table 7: Digital Twins in Smart City by Type 2021-2026
  • Table 8: Digital Twins in Smart City by Application 2021-2026
  • Table 9: Digital Twins in Automotive by Type 2021-2026
  • Table 10: Digital Twins in Automotive by Application 2021-2026
  • Table 11: Digital Twins in Healthcare by Type 2021-2026
  • Table 12: Digital Twins in Healthcare by Application 2021-2026
  • Table 13: Digital Twins in Transport by Type 2021-2026
  • Table 14: Digital Twins in Transport by Application 2021-2026
  • Table 15: Digital Twins by Region 2021-2026
  • Table 16: North America Digital Twins by Country 2021-2026
  • Table 17: North America Digital Twins by Industry 2021-2026
  • Table 18: South America Digital Twins by Country 2021-2026
  • Table 19: South America Digital Twins by Industry 2021-2026
  • Table 20: Europe Digital Twins by Country 2021-2026
  • Table 21: Europe Digital Twins by Industry 2021-2026
  • Table 22: APAC Digital Twins by Country 2021-2026
  • Table 23: APAC Digital Twins by Industry 2021-2026
  • Table 24: MEA Digital Twins by Country 2021-2026
  • Table 25: MEA Digital Twins by Industry 2021-2026

Teleoperation and Telerobotics Market by Technologies, Solutions, and Applications for Enterprise and Industrial Automation

1.0. Executive Summary

2.0. Introduction

  • 2.1. Teleoperation and Telerobotics
    • 2.1.1. Telepresence
    • 2.1.2. Telemanipulator and Collaborative Robots
  • 2.2. Teleoperation Control Scheme
  • 2.3. Virtual Reality and Telepresence
  • 2.4. Remotely Operated Vehicles
  • 2.5. Industrial IoT Adoption, Productivity, and Economic Contribution
  • 2.6. Smart Factories, Industrial Automation and Industry 4.0
  • 2.7. Workforce Augmentation
  • 2.8. Hybrid Enterprise
  • 2.9. Drone Logistics
  • 2.10. Coronavirus Impact and Teleoperation Uptake
  • 2.11. Market Drivers and Challenges
  • 2.12. Value Chain Analysis
    • 2.12.1. Hardware Providers
    • 2.12.2. Equipment Providers
    • 2.12.3. Platform Providers
    • 2.12.4. Software and Service Providers

3.0. Technology and Application Analysis

  • 3.1. Infrastructure Technology
    • 3.1.1. Connected/Molding Machine
    • 3.1.2. Telerobot/Telemanipulator
      • 3.1.2.1. Technical Architecture
        • 3.1.2.1.1. Telerobot
        • 3.1.2.1.2. Web Client
        • 3.1.2.1.3. Communications
        • 3.1.2.1.4. Transmission Protocol
      • 3.1.2.2. Real-Time Transport Protocol
    • 3.1.3. HMI Computing/Video Conferencing Device
    • 3.1.4. Servers and Storage
    • 3.1.5. Tele-maintenance Station
    • 3.1.6. Hardware Equipment
  • 3.2. Software Technology
    • 3.2.1. Digital Twinning and Controlling
      • 3.2.1.1. Virtual Objects and Control of Real Assets
      • 3.2.1.2. Digital Twinning as a Service
    • 3.2.2. Conferencing and Communication
    • 3.2.3. Network Management and Security
    • 3.2.4. Identity and Authentication
    • 3.2.5. Remote Monitoring and Analytics
    • 3.2.6. Real-Time Streaming
    • 3.2.7. AI Software
      • 3.2.7.1. Machine Learning
      • 3.2.7.2. Context-Based Processing
      • 3.2.7.3. Cognitive Computing
      • 3.2.7.4. Swarm Computing
  • 3.3. Potential Application Analysis
    • 3.3.1. Videoconferencing
    • 3.3.2. Telepresence
    • 3.3.3. Live Streaming
    • 3.3.4. Remote Surgery and Operation
    • 3.3.5. Drone Logistics
    • 3.3.6. Pipeline Inspection
    • 3.3.7. Advertising and Sales
    • 3.3.8. Hazardous Environments
    • 3.3.9. Subsea Work
    • 3.3.10. Building Communities
    • 3.3.11. Space Exploration
  • 3.4. Use Case Analysis
    • 3.4.1. Manufacturing
    • 3.4.2. Healthcare and Medical
    • 3.4.3. Automotive
    • 3.4.4. Logistics
    • 3.4.5. Education
    • 3.4.6. Entertainment
    • 3.4.7. Marine
    • 3.4.8. Oil, Gas, and Mining
    • 3.4.9. Advertising
    • 3.4.10. Agriculture
    • 3.4.11. Space Management
  • 3.5. Connectivity and Cloud Deployment
  • 3.6. Bilateral Control and Haptic Feedback
    • 3.6.1. Unilateral vs. Bilateral Model Performance
    • 3.6.2. Tactile Robotics and Human-Like Dexterity
    • 3.6.3. Telerobotic Interface
  • 3.7. Convergence between IT and OT
  • 3.8. Multi-Access Edge Computing and 5G Network
  • 3.9. Industrial Prosumer
  • 3.10. Connected Service and Teleoperation

4.0. Company Analysis

  • 4.1. AppFolio
  • 4.2. ABB Group
  • 4.3. AGT Robotics
  • 4.4. ARM Holdings
  • 4.5. Bosch
  • 4.6. Buildium
  • 4.7. Console
  • 4.8. Calvary Robotics
  • 4.9. Cisco
  • 4.10. CloudMinds
  • 4.11. Contiki
  • 4.12. H Robotics
  • 4.13. Digi International
  • 4.14. Entrata
  • 4.15. Ekso Bionics
  • 4.16. General Electric
  • 4.17. Google
  • 4.18. IBM
  • 4.19. iRobot
  • 4.20. Intuitive Surgical
  • 4.21. Kuka AG
  • 4.22. London Computer Systems
  • 4.23. MRI Software
  • 4.24. Nachi Fujikoshi
  • 4.25. Omron Corporation
  • 4.26. Property Boulevard
  • 4.27. RealPage
  • 4.28. Rockend
  • 4.29. TOPS Software
  • 4.30. Yardi Systems

5.0. Teleoperations and Telerobotics Market Analysis and Forecast 2021-2026

  • 5.1. Global IIoT Teleoperation and Telerobotics Market 2021-2026
    • 5.1.1. Consolidated IIoT Teleoperation and Telerobotics Market
    • 5.1.2. IIoT Teleoperation and Telerobotics Market by Segment
      • 5.1.2.1. IIoT Teleoperation and Telerobotics Market by Hardware
      • 5.1.2.2. IIoT Teleoperation and Telerobotics Market by Equipment
      • 5.1.2.3. IIoT Teleoperation and Telerobotics Market by Software
        • 5.1.2.3.1. IIoT Teleoperation and Telerobotics Market by AI Software Technology
      • 5.1.2.4. IIoT Teleoperation and Telerobotics Market by Service
        • 5.1.2.4.1. IIoT Teleoperation and Telerobotics Market by Professional Service
    • 5.1.3. IIoT Teleoperation and Telerobotics Market by Application
    • 5.1.4. IIoT Teleoperation and Telerobotics Market by Industry Vertical
    • 5.1.5. IIoT Teleoperation and Telerobotics Market by Deployment
    • 5.1.6. IIoT Teleoperation and Telerobotics Market by Connectivity
  • 5.2. Regional IIoT Teleoperation and Telerobotics Market 2021-2026
    • 5.2.1. IIoT Teleoperation and Telerobotics Market by Region
    • 5.2.2. North America IIoT Teleoperation and Telerobotics Market 2021-2026
    • 5.2.3. Europe IIoT Teleoperation and Telerobotics Market 2021-2026
    • 5.2.4. Asia Pacific IIoT Teleoperation and Telerobotics Market 2021-2026
    • 5.2.5. Middle East IIoT Teleoperation and Telerobotics Market 2021-2026
    • 5.2.6. Latin America IIoT Teleoperation and Telerobotics Market 2021-2026

6.0. Conclusions and Recommendations

Figures

  • Figure 1: Teleoperation System Architecture
  • Figure 2: Teleoperation Control Scheme
  • Figure 3: Hydraulic Injection Molding Machines
  • Figure 4: Telerobotics System Architecture
  • Figure 5: Surgical Robot Image
  • Figure 6: Marine Navigation Structure
  • Figure 7: Autonomous Navigation System Architecture
  • Figure 8: Agriculture Robotics and Autonomous Systems
  • Figure 9: Teleoperation Human Machine Haptic Interaction
  • Figure 10: Tactile Telerobot Architecture
  • Figure 11: Pelion Device to Data Platform
  • Figure 12: Bosch IoT Suite Framework
  • Figure 13: Calvary Extended Services
  • Figure 14: Ekso Bionic Exoskeleton
  • Figure 15: Global IIoT Teleoperation and Telerobotics Market 2021-2026

Tables

  • Table 1: Global IIoT Teleoperation and Telerobotics Market by Segment 2021-2026
  • Table 2: Global IIoT Teleoperation and Telerobotics Market by Hardware 2021-2026
  • Table 3: Global IIoT Teleoperation and Telerobotics Market by Equipment 2021-2026
  • Table 4: Global IIoT Teleoperation and Telerobotics Market by Software 2021-2026
  • Table 5: Global IIoT Teleoperation and Telerobotics Market by AI Software Technology 2021-2026
  • Table 6: Global IIoT Teleoperation and Telerobotics Market by Service 2021-2026
  • Table 7: Global IIoT Teleoperation and Telerobotics Market by Professional Service 2021-2026
  • Table 8: Global IIoT Teleoperation and Telerobotics Market by Application 2021-2026
  • Table 9: Global IIoT Teleoperation and Telerobotics Market by Industry Vertical 2021-2026
  • Table 10: Global IIoT Teleoperation and Telerobotics Market by Deployment 2021-2026
  • Table 11: Global IIoT Teleoperation and Telerobotics Market by Connectivity 2021-2026
  • Table 12: Global IIoT Teleoperation and Telerobotics Market by Region 2021-2026
  • Table 13: North America IIoT Teleoperation and Telerobotics Market by Segment 2021-2026
  • Table 14: North America IIoT Teleoperation and Telerobotics Market by Hardware 2021-2026
  • Table 15: North America IIoT Teleoperation and Telerobotics Market by Equipment 2021-2026
  • Table 16: North America IIoT Teleoperation and Telerobotics Market by Software 2021-2026
  • Table 17: North America IIoT Teleoperation and Telerobotics Market by AI Software Technology 2021-2026
  • Table 18: North America IIoT Teleoperation and Telerobotics Market by Service 2021-2026
  • Table 19: North America IIoT Teleoperation and Telerobotics Market by Professional Service 2021-2026
  • Table 20: North America IIoT Teleoperation and Telerobotics Market by Application 2021-2026
  • Table 21: North America IIoT Teleoperation and Telerobotics Market by Industry Vertical 2021-2026
  • Table 22: North America IIoT Teleoperation and Telerobotics Market by Deployment 2021-2026
  • Table 23: North America IIoT Teleoperation and Telerobotics Market by Connectivity 2021-2026
  • Table 24: North America IIoT Teleoperation and Telerobotics Market by Country 2021-2026
  • Table 25: Europe IIoT Teleoperation and Telerobotics Market by Segment 2021-2026
  • Table 26: Europe IIoT Teleoperation and Telerobotics Market by Hardware 2021-2026
  • Table 27: Europe IIoT Teleoperation and Telerobotics Market by Equipment 2021-2026
  • Table 28: Europe IIoT Teleoperation and Telerobotics Market by Software 2021-2026
  • Table 29: Europe IIoT Teleoperation and Telerobotics Market by AI Software Technology 2021-2026
  • Table 30: Europe IIoT Teleoperation and Telerobotics Market by Service 2021-2026
  • Table 31: Europe IIoT Teleoperation and Telerobotics Market by Professional Service 2021-2026
  • Table 32: Europe IIoT Teleoperation and Telerobotics Market by Application 2021-2026
  • Table 33: Europe IIoT Teleoperation and Telerobotics Market by Industry Vertical 2021-2026
  • Table 34: Europe IIoT Teleoperation and Telerobotics Market by Deployment 2021-2026
  • Table 35: Europe IIoT Teleoperation and Telerobotics Market by Connectivity 2021-2026
  • Table 36: Europe IIoT Teleoperation and Telerobotics Market by Country 2021-2026
  • Table 37: APAC IIoT Teleoperation and Telerobotics Market by Segment 2021-2026
  • Table 38: APAC IIoT Teleoperation and Telerobotics Market by Hardware 2021-2026
  • Table 39: APAC IIoT Teleoperation and Telerobotics Market by Equipment 2021-2026
  • Table 40: APAC IIoT Teleoperation and Telerobotics Market by Software 2021-2026
  • Table 41: APAC IIoT Teleoperation and Telerobotics Market by AI Software Technology 2021-2026
  • Table 42: APAC IIoT Teleoperation and Telerobotics Market by Service 2021-2026
  • Table 43: APAC IIoT Teleoperation and Telerobotics Market by Professional Service 2021-2026
  • Table 44: APAC IIoT Teleoperation and Telerobotics Market by Application 2021-2026
  • Table 45: APAC IIoT Teleoperation and Telerobotics Market by Industry Vertical 2021-2026
  • Table 46: APAC IIoT Teleoperation and Telerobotics Market by Deployment 2021-2026
  • Table 47: APAC IIoT Teleoperation and Telerobotics Market by Connectivity 2021-2026
  • Table 48: APAC IIoT Teleoperation and Telerobotics Market by Country 2021-2026
  • Table 49: ASEAN IIoT Teleoperation and Telerobotics Market by Country 2021-2026
  • Table 50: MEA IIoT Teleoperation and Telerobotics Market by Segment 2021-2026
  • Table 51: MEA IIoT Teleoperation and Telerobotics Market by Hardware 2021-2026
  • Table 52: MEA IIoT Teleoperation and Telerobotics Market by Equipment 2021-2026
  • Table 53: MEA IIoT Teleoperation and Telerobotics Market by Software 2021-2026
  • Table 54: MEA IIoT Teleoperation and Telerobotics Market by AI Software Technology 2021-2026
  • Table 55: MEA IIoT Teleoperation and Telerobotics Market by Service 2021-2026
  • Table 56: MEA IIoT Teleoperation and Telerobotics Market by Professional Service 2021-2026
  • Table 57: MEA IIoT Teleoperation and Telerobotics Market by Application 2021-2026
  • Table 58: MEA IIoT Teleoperation and Telerobotics Market by Industry Vertical 2021-2026
  • Table 59: MEA IIoT Teleoperation and Telerobotics Market by Deployment 2021-2026
  • Table 60: MEA IIoT Teleoperation and Telerobotics Market by Connectivity 2021-2026
  • Table 61: MEA IIoT Teleoperation and Telerobotics Market by Country 2021-2026
  • Table 62: Latin America IIoT Teleoperation and Telerobotics Market by Segment 2021-2026
  • Table 63: Latin America IIoT Teleoperation and Telerobotics Market by Hardware 2021-2026
  • Table 64: Latin America IIoT Teleoperation and Telerobotics Market by Equipment 2021-2026
  • Table 65: Latin America IIoT Teleoperation and Telerobotics Market by Software 2021-2026
  • Table 66: Latin America IIoT Teleoperation and Telerobotics Market by AI Software Technology 2021-2026
  • Table 67: Latin America IIoT Teleoperation and Telerobotics Market by Service 2021-2026
  • Table 68: Latin America IIoT Teleoperation and Telerobotics Market by Professional Service 2021-2026
  • Table 69: Latin America IIoT Teleoperation and Telerobotics Market by Application 2021-2026
  • Table 70: Latin America IIoT Teleoperation and Telerobotics Market by Industry Vertical 2021-2026
  • Table 71: Latin America IIoT Teleoperation and Telerobotics Market by Deployment 2021-2026
  • Table 72: Latin America IIoT Teleoperation and Telerobotics Market by Connectivity 2021-2026
  • Table 73: Latin America IIoT Teleoperation and Telerobotics Market by Country 2021-2026