市場調査レポート

ホワイトスペース装置:世界市場と技術・リスク・機会

White space devices: Global market and technology, risks and opportunities

発行 Maravedis, Inc. 商品コード 252975
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=105.42円で換算しております。
Back to Top
ホワイトスペース装置:世界市場と技術・リスク・機会 White space devices: Global market and technology, risks and opportunities
出版日: 2012年07月30日 ページ情報: 英文
概要

当レポートでは、全世界のホワイトスペースの利用に向けた動きと、関連装置の市場機会について分析し、ホワイトスペースの概念や技術的特性、主な活用分野と今後の技術開発の方向性・見通し、世界各国での規制・監督体制、商用利用に向けた動き(検証試験の結果など)、今後5年間の市場動向の予測(関連装置の出荷台数・市場収益、予想されるリスク、関連企業の動向、今後の開発のタイムラインなど)を調査・推計して、その結果を概略以下の構成でお届けします。

第1章 エグゼクティブ・サマリー

第2章 ホワイトスペースの概略

  • ホワイトスペースの起源
  • 興味を抱いている関係者
  • 今後の課題

第3章 技術と規格

  • ホワイトスペースの概念:概要
  • スペクトラム・センシング(周波数帯域の感知)
    • 単独の混信回避手段としてのスペクトラム・センシング
    • センシング用シグナル処理のアプローチ
    • センシングの実際の性能と課題
    • センシングの典型的なシナリオ
    • ジオロケーションに付随するセンシング
    • テレビ用ホワイトスペース(TVWS)規格の範疇でのセンシングの強化
    • ジオロケーションと並んで、センシングも義務となるのか
  • ジオロケーション・データベース
    • 概要
    • データベースの機能
    • ホワイトスペース・データベース実装の事例
  • 技術規格
    • IEEEのテレビ用ホワイトスペース(TVWS)関連規格群の概要
    • EEE 802.22-2011 WRAN
    • IEEE 802.11af(Wi-Fi関連)
    • IEEE 802.15.4
    • IEEE 802.19(他規格との共存関連)
    • IEEE DySPAN-SC
    • ECMA - 392
    • WEIGHTLESS
    • IETF:PAWS(ホワイトスペースへのアクセスのためのプロトコル)
    • ETSI RRS:ホワイトスペース向けシナリオと、3GPP LTEの活用
  • 利用可能なホワイトスペース帯域幅(Maradevisの調査による)
    • モデリングの前提条件
    • 英国各地のホワイトスペース用周波数帯
    • 各帯域幅向けホワイトスペース装置(WSD)の市場機会
    • 各目標スループットにおけるカバー率と、必要とされるホワイトベース帯域幅
    • 目標カバー率に伴うホワイトスペース帯域幅の損失
    • 技術モデリングの結論
  • 産学協同研究
  • サマリー

第4章 ホワイトスペースの潜在的な利用分野

  • ホワイトスペースの用途に関する議論
  • 初期の関心
  • ブロードバンド・アクセスのための用途
    • 地方でのアクセス
    • Wi-Fiホットゾーンの活用
    • バックホール
    • 「純粋なアクセス」の先を見据えて:ビジネスケース
    • スマート・シティ
    • 公衆安全と緊急対応
  • オペレーター・モジュール
  • M2M(機会相互間)利用
  • 放送・動画向け利用
  • サマリー

第5章 規制の状況

  • テレビのホワイトスペースに適応可能な周波数帯の活用方法
  • テレビのホワイトスペース活用の概念は、新しいものではない
  • なぜホワイトスペースは、他の/既存の技術とは異なるのか
  • 既存サービス業者保護の義務
  • 「隠れインカムベント(incumbent)」の影響
  • どうやって、監督当局はホワイトスペースの成功を支援できるか
  • 監督当局の間でのホワイトスペース開発の進展
    • 米国・英国による、テレビ用ホワイトスペースに関する規制の主導
    • Ofcom:英国でのホワイトスペース・アクセスの開発の概要
    • FCC:米国でのホワイトスペース・アクセスの開発の概要
  • ジオロケーション・データベースの規制面・商業面での影響
    • EU諸国
    • 無線周波数帯域政策グループ
    • CEPT(欧州郵便電気通信主管庁会議)
    • 欧州委員会
    • COGEU (COGnitive radio system EU)
    • インド(TRAI)
    • カナダ(Industry Canada)
    • その他の国際的規制
  • 進化の見込みと今後の課題

第6章 ホワイトスペース装置の商用利用

  • エコシステム/サプライチェーン
    • 製品ベンダー(インフラ・装置)
    • チップセット・ベンダー
    • ジオロケーション・データベースのプロバイダー
  • ホワイトスペース装置の技術規格の進歩と影響
  • ホワイトスペースのプロトタイプ(原型)
  • 実地試験と相互運用性の検証
    • Cambridgeでの実地試験
    • 一般試験の状況
  • 試験運用から実際の商用利用へ:主な成功要因
  • コスト削減と大量生産
  • サマリー

第7章 市場規模

第8章 結論

第9章 用語集

目次

Abstract

This report:

combines the expertise and analysis of Maravedis-Rethink Technology and Real Wireless to provide a unique and independent insight into some of the key technical, commercial and market aspects relating to the current and future use of white space devices

gives sufficient detail to enable investors, technologists, product vendors and regulators to determine whether white space devices:

  • Provide a credible and sustainable investment opportunity with sufficient near and mid-term growth opportunity
  • Are supported by commercial momentum and confidence in the ecosystem
  • Are supported by a regulatory framework that is based on thorough and detailed technical and economic analysis
  • Can establish a sustainable product roadmap and plans for vendor relationships and interoperability

shines a light on the aspects of WSDs that have generally been 'hidden' by the industry and this report exposes the key issues that could cause:

  • Delays to deployments
  • Interference to TV viewers and other white space device (WSD ) users
  • A stunt in the growth of the ecosystem
  • Potential impact to the wider investment community
  • A poor match between applications and the nature of white space spectrum
  • Greater upside opportunities than have been recognised to date

is the first of its kind to combine detailed technical analysis with commercial and market data for white space device industry

image1

Report highlights:

In-depth analysis of white space applications:

  • Survey of the key applications that WSDs can support
  • Analysis of the business and operator models
  • Reveals which applications will most likely be supported by vendors out to 2016

A current view of white space technology performance and the multiple standards being proposed:

  • Highly detailed qualitative analysis of the technology features and standards
  • Insightful technical analysis of the available bandwidth across UK locations as an illustration of how bandwidth varies for differing applications and regulatory approaches

International regulatory analysis:

  • Detailed analysis of current regulatory activity to support introduction of WSDs in the US and UK
  • Reveals the issues of a 'hidden' incumbent
  • Information that can support regulators in their plans to start implementing WSDs
  • Review of wider international regulatory activity from within Europe, Africa and beyond

Commercial evaluation:

  • Evaluation of the WSD ecosystem including supply chain, chip vendors and database providers
  • Review of the latest field trials including the Cambridge White Space trial
  • Analysis of the leading players, their products, achievements and likely plans for future development and product launches

5-year market forecast:

  • Surveyed more than 50 companies either involved in WSDs or considering becoming involved
  • Identification of key risks to mass market development
  • Timelines to launch of commercial products
  • Reveals which applications are highest priority for companies
  • Forecast number of connections by white space networks in 2016
  • Projected revenues from white space chipsets and components 2014 - 2017 for M2M and Broadband applications

mentioned in this report

  • Adaptrum
  • Arqiva
  • Aviacomm
  • BBC
  • Broadcom
  • BSKYB
  • BT
  • Carlson Wireless
  • Cognovo
  • Comsearch
  • CRFS
  • Dell
  • ERF Wireless
  • Freescale
  • Frequency Finder
  • Google
  • HP
  • Huawei
  • IBM
  • Intel
  • KB Enterprises
  • Key Bridge Global
  • KTS Wireless
  • LS Telcom
  • Marvell
  • Microsoft
  • Motorola
  • Neul
  • Neustar
  • Nokia
  • Phillips
  • Qualcomm Atheros
  • Spectrum Bridge
  • Telcordia
  • Texas Instruments
  • TTP
  • Ubiquiti
  • Virgin Media
  • WSdB

Table of Contents

2. Introduction to white spaces (why, where and how)

  • 2.1 The origins of the white spaces:
  • 2.2 The interested parties
  • 2.3 Challenges ahead:

3. Technology and standards

  • 3.1 Overview of White Space Concept
  • 3.2 Spectrum sensing
    • 3.2.1 Spectrum sensing as the sole method of interference avoidance
    • 3.2.2 Some sensing signal processing approaches
    • 3.2.3 Practical sensing performance and issues
    • 3.2.4 Typical sensing scenarios
    • 3.2.5 Sensing in addition to geolocation
    • 3.2.6 Enhancing sensing within TVWS standards
    • 3.2.7 Will sensing be mandatory, in addition to geolocation?
  • 3.3 Geolocation Databases
    • 3.3.1 Overview
    • 3.3.2 Functions performed by the database
    • 3.3.3 Examples of White Space Database Implementations
  • 3.4 Standards
    • 3.4.1 IEEE TVWS Standards Family Overview
    • 3.4.2 IEEE 802.22-2011 WRAN
    • 3.4.3 IEEE 802.11af (Wi-Fi)
    • 3.4.4 IEEE 802.15.4
    • 3.4.5 IEEE 802.19 Co-Existence
    • 3.4.6 IEEE DySPAN-SC
    • 3.4.7 ECMA - 392
    • 3.4.8 WEIGHTLESS
    • 3.4.9 IETF Protocol to Access White Space (PAWS)
    • 3.4.10 ETSI RRS: White Space Scenarios and Application of 3GPP LTE
  • 3.5 Our analysis of available white space bandwidth
    • 3.5.1 Our modelling assumptions
    • 3.5.2 White space bandwidth by location across the UK
    • 3.5.3 Market opportunity for WSDs for different target bandwidths
    • 3.5.4 Percentage coverage at different target throughputs and required white space bandwidths
    • 3.5.5 Loss of white space bandwidth with target coverage requirements
    • 3.5.6 Conclusions from technical modelling
  • 3.6 Industry Collaborators research and academia
  • 3.7 Summary

4. Potential Applications for White Spaces

  • 4.1 The white space applications debate
  • 4.2 Early interest
  • 4.3 Broadband access applications
    • 4.3.1 Rural access
    • 4.3.2 Wi-Fi hotzone applications
    • 4.3.3 Backhaul
    • 4.3.4 Looking beyond pure access - business cases
    • 4.3.5 Smart cities
    • 4.3.6 Public safety and emergency response
  • 4.4 Operator models
  • 4.5 Machine-to-machine applications
  • 4.6 Broadcasters and video
  • 4.7 Summary

5. Regulatory status

  • 5.1 Spectrum allocations applicable to television white space
  • 5.2 The concept of television white space is not new
  • 5.3 Why is white space different compared to other/previous technologies?
  • 5.4 Protection to incumbent services is imperative
  • 5.5 The impact of the hidden incumbent
  • 5.6 How can regulators help with the success of white space?
  • 5.7 Progress of white space development among regulators
    • 5.7.1 The US and the UK are leading the way in television white space regulation
    • 5.7.2 Overview of UK (Ofcom) developments in white space access
    • 5.7.3 Overview of USA (FCC) developments in white space access
  • 5.8 Regulatory versus commercial implementation of geo-location databases
    • 5.8.1 EU
    • 5.8.2 Radio Spectrum Policy Group
    • 5.8.3 Electronic Communications Committee (CEPT)
    • 5.8.4 European Commission
    • 5.8.5 COGEU []
    • 5.8.6 India (TRAI)
    • 5.8.7 Canada (Industry Canada)
    • 5.8.8 Other international regulators
  • 5.9 Expected evolution and challenges ahead

6. Commercialisation of white space devices

  • 6.1 Ecosystem/Supply chain
    • 6.1.1 Product vendors (infrastructure and devices)
    • 6.1.2 Chipset vendors
    • 6.1.3 Geolocation database providers
  • 6.2 Progress and implementation of white space device standard
  • 6.3 White space prototypes
  • 6.4 Field trials and interoperability testing
    • 6.4.1 Cambridge white spaces trial
    • 6.4.2 General white space trial status
  • 6.5 Key success factors from trial to commercial reality
  • 6.6 Cost reduction and high volume production
  • 6.7 Summary

7. Market size

8. Conclusions

9. Glossary of terms

Tables

  • Table 1-1 Summary of White Space Standards
  • Table 3-1 802.22 key system features
  • Table 3-2 Summary of White Space Standards
  • Table 5-1 UK parameters for RF detection. Source: Ofcom[2
  • Table 5-2 UK parameters for geo-location database. Source: Ofcom[2]
  • Table 6-3 FCC TV white space device parameter values
  • Table 5-4 Differentiation between commercial versus regulatory implementation of geo-location databases
  • Table 6-1 Example of some commercial products launched by white space vendors
  • Table 6-2 Timetable of white space technology standards for rural broadband and M2M type applications
  • Table 6-3 Prototype devices from FCC phase II laboratory testing in 2008 Source: FCC
  • Table 6-4 Global white space trials and the high level objectives achieved

Figures

  • Figure 1-1: Projected revenues from white spaces chips and components with best and worst case scenarios
  • Figure 2-1 Example of US white spaces availability Source: Spectrum Bridge
  • Figure 2-2 Dynamic spectrum auction mechanism as depicted in Google US patent 12/363,282 granted in May 2012
  • Figure 2-3 The concept of a dynamic spectrum broker Source: EU COGEU project on cognitive radio for sharing white spaces
  • Figure 3-1 'White space' networks operate in locally unused TV channels
  • Figure 3-2 Comparison of coverage for WLAN usage in different frequency bands for a square km in London. Source: copied from "Spectrum sharing issues for small cells", BT[]
  • Figure 3-3 Energy Detection Sensing
  • Figure 3-4 A potential scenario where sensing is likely to be successful
  • Figure 3-5 A potential scenario where sensing is likely to be unsuccessful
  • Figure 3-6 Use of a Geolocation Database to determine local white spaces
  • Figure 3-7 Key steps performed by the geolocation database function
  • Figure 3-8 Comparison of various propagation models with 'ground truth' measurements over 57 locations across two US states, in terms of proportion TV channels falsely identified as being occupied by models. Source: copied from 'Senseless'[
  • Figure 3-9 Example of Telcordia's US White Space Database, source []
  • Figure 3-10 Spectrum Bridge US Interactive Map, source []
  • Figure 3-11 White Space Database App for smart phones. Source Spectrum Bridge []
  • Figure 3-12 IEEE Standards related to TVWS, source Nokia []
  • Figure 3-13 Network Overview and Scope of Weightless Standard. Source: copied from Webb []
  • Figure 3-14 Protocol stacks associated with Weightless. Source: copied from Webb []
  • Figure 3-15 Example of use case from PAWS. Source: IETF []
  • Figure 3-16 Example Message format and data types for PAWS. Source IETF []
  • Figure 3-17 Architecture and Information Flow diagram for Radio Resource Optimisation in TVWS: Source ETSI []
  • Figure 3-18 TV White Space used for Opportunistic Offload by LTE-Advanced
  • Figure 3-19 UK map showing the available white space bandwidth for clusters of premises
  • Figure 3-20 CDF plot of available bandwidth according to rural, suburban and urban geotypes
  • Figure 3-21 Coverage at different target throughputs and WS bandwidths
  • Figure 3-22 Loss of WSD bandwidth with target coverage requirements
  • Figure 4-1 Key viable applications for white spaces as identified by participants in the white space value chain (chip and device makers, operators, 43 responses).
  • Figure 4-2 Do you believe white space Wi-Fi will be an essential part of carrier Wi-Fi strategy by 2016? Source Rethink/RealWireless survey of mobile operators worldwide
  • Figure 4-3 Most viable application for urban or suburban white spaces network (survey of 55 cellcos, WISPs and cities in US and EU, two selections each permitted)
  • Figure 4-4 White spaces cloud architecture, supporting multiple applications Source: Alcatel-Lucent
  • Figure 4-5 Perception of the most important M2M applications for white spaces. 43 responses from across the value chain. Respondents were asked to select their first, second and third most important applications, in terms of commercial and technical viability, and a fourth application with strong potential, but after 2015.
  • Figure 4-6 Rural Virginia Smart Grid Project Source: VirginiaTech
  • Figure 5-1 Overview of white space spectrum utilisation within television broadcast band, Source: IEEE 802.22 -2011 Standard []
  • Figure 5-2 TV White spaces spectrum in the US. Source: University of Colorado []
  • Figure 5-3 Digital television band plan and cleared spectrum in the UK. Source: Ofcom []
  • Figure 5-4 Illustrative regulatory milestones and timeline
  • Figure 6-1. Level of engagement with white spaces market: survey of over 50 respondents
  • Figure 6-2 Predicted timelines to launch a commercial white spaces product: over 50 responses
  • Figure 6-3 Which white spaces standards do you believe will become commercially viable by 2015? (multiple responses allowed)
  • Figure 6-4 Commercial roll out, comparison of white space devices and Wi-Fi
  • Figure 7-1: Level of engagement with white spaces market : survey of over 50 respondents
  • Figure 7-2: Predicted timelines to launch a commercial white spaces product: 45 responses
  • Figure 7-3: Target markets for white space devices (Companies evaluating or planning product launch, two responses allowed)
  • Figure 7-4: Which white spaces standards do you believe will become commercially viable by 2015? (multiple responses allowed)
  • Figure 7-5: Key perceived risks to a mass market developing by 2016 (%, two responses allowed)
  • Figure 7-6: Key application areas
  • Figure 7-7 Connections supported by white spaces networks in 2016
  • Figure 7-8: Projected revenues from white spaces chipsets and components 2014-2017.
  • Figure 7-9 Projected revenues from white spaces chips and components with best and worst case scenarios
  • Figure 8-1 White space device market opportunity
Back to Top