表紙
市場調査レポート

抗体技術・損耗率:産業分析

Antibody Technologies and Attrition Rates - An Industry Analysis 2013

発行 La Merie Publishing 商品コード 265036
出版日 ページ情報 英文 607 Pages
即納可能
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
抗体技術・損耗率:産業分析 Antibody Technologies and Attrition Rates - An Industry Analysis 2013
出版日: 2013年03月26日 ページ情報: 英文 607 Pages
概要

当レポートでは、臨床または市販段階にある裸抗体504種類の抗体作製技術の同定に基づき、それらの記述統計と調査期間中の状況をまとめており、過去・現在の抗体技術の利用状況、各抗体作製技術の成功率、臨床開発における抗体の失敗理由、ジェネリックおよびIPに保護された抗体技術の相対価値、および好まれる抗体フォーマットやIgGアイソタイプなど、概略以下の構成でお届けいたします。

第1章 エグゼクティブサマリー・議論

第2章 イントロダクション

第3章 調査手法

第4章 結果

  • 抗体技術の利用
  • 損耗率
  • 失敗理由
  • 抗体作製技術・ターゲット
  • 抗体技術・抗体フォーマット
  • インビボ作製抗体の親動物種
  • 免疫グロブリンクラスおよびアイソタイプvs. 抗体技術
  • 抗体技術および治療領域
  • 治療領域における抗体の損耗率
  • ベンチマーク分析:大手製薬・バイオテクノロジー企業の抗体技術の嗜好と損耗率

第5章 図表

第6章 付録:抗体データシート

目次
Product Code: LMFR0007

The report “Antibody Technologies and Attrition Rates - an industry analysis 2013” is based on the identification of the antibody generation technologies of 504 naked antibodies in clinical or market stages. Information was retrieved from scientific and corporate publications as well as from patent and legal literature. The report provides descriptive statistics of the 504 naked antibodies and their status during the study period of January 1, 2013 to February 28, 2013. The antibodies are categorized as active during the study period or discontinued during or before the study period. Attrition rates were calculated across a number of variables.

Descriptive statistics of the 504 naked antibodies include the following variables:

  • Unique antibody identifiers (drug codes; generic name; brand name)
  • Antibody format (full length, Fab, scFv, VH/VL, nanobody, bispecific, cocktail/polyclonal)
  • In vitro antibody generation technologies (display technologies from CAT, Dyax, Morphosys, BioInvent, Domantis, Genentech, others)
  • In vivo antibody generation technologies (chimeric, primatized, nanobodies, deimmunized, human engineered, humaneered, humanized, XenoMouse, HuMab mouse, KM mouse, VelocImmune mouse, human B-cell derived)
  • Animal species of parental wild-type antibody (mouse, rat, rabbit, hamster, cynomolgus monkey, camelid)
  • Antibody status (active/discontinued)
  • Year of failure
  • Reason for failure (efficacy, pharmacokinetics/ADME; safety; technical, business, next generation, inactivity)
  • Target
  • Immunoglobulin class and IgG isotype
  • Highest phase
  • Therapeutic area of lead indication
  • Companies (developer, licensor/originator)

An Antibody Data Sheet was prepared for each unique antibody containing the retrieved information and the source of information in the form of a scientific reference or a hyperlink leading to the website from which the information was obtained.

The analysis essentially evaluated the question whether there are differences in clinical attrition rates between in vitro and in vivo antibody generation technologies as well as within the different in vitro and in antibody generation technologies. Attrition rate was defined as the percentage of failed antibodies of all active and inactive antibodies.

Benefits from the data and the analysis:

  • Understand the historical and present state of the art use of antibody technologies;
  • Learn the success rate of each antibody generation technology;
  • Understand the reasons for failure of antibodies in clinical development;
  • Appreciate the relative value of generic and of IP protected antibody technologies;
  • Know which antibody technologies are using your competitors;
  • Know the preferred antibody formats, IgG isotypes, development indications, parental wild-type animal species.
  • Learn the influence of the target for the success rate of the selected antibody technology.

Table of Contents

1. Executive Summary and Discussion

2. Introduction

3. Methodology

4. Results

  • 4.1. Use of antibody technologies
  • 4.2. Attrition rates
  • 4.3. Reasons for failure
  • 4.4. Antibody generation technologies and targets
  • 4.5. Antibody technologies and antibody formats
  • 4.6. Parental animal species of in vivo generated antibodies
  • 4.7. Immunoglobulin class and isotype vs. antibody technology
  • 4.8. Antibody technology and therapeutic areas
  • 4.9. Attrition rates of antibodies in therapeutic areas
  • 4.10. Benchmark analysis: big pharma and biotech antibody technology preferences and attrition rates

5. Tables

  • Table 1: Overall attrition rate of in vitro generated antibodies
  • Table 2: Overall attrition rate of in vivo generated antibodies
  • Table 3: Highest phase of active antibodies generated by in vitro technologies
  • Table 4: Highest phase of active antibodies generated by in vivo technologies
  • Table 5: Year of antibody failure for in vitro generated antibodies
  • Table 6: Year of antibody failure for in vivo generated antibodies
  • Table 7: Attrition rate of in vitro generated antibodies in the period 2006-2013
  • Table 8: Attrition rate of in vivo generated antibodies in the period 2006-2013
  • Table 9: Highest phase of failed antibodies generated by in vitro technologies
  • Table 10: Highest phase of failed antibodies generated by in vivo technologies
  • Tables 11: Reasons for failure of antibodies generated by in vitro technologies
  • Tables 12: Reasons for failure of antibodies generated by in vivo technologies
  • Table 13: Reasons for failure of humanized antibodies per phase
  • Tables 14: Targets of failed in vitro generated antibodies per technology
  • Tables 15: Targets vs. in vitro and in vivo antibody generation technologies
  • Tables 16: Transgenic mouse antibodies and targets
  • Table 17: Antibody technologies and antibody formats
  • Table 18: Parental animal species of in vivo generated antibodies
  • Table 19: Immunoglobulin class and isotype vs antibody technology
  • Table 20: In vitro antibody technology and therapeutic areas
  • Table 21: In vivo antibody technology and therapeutic areas
  • Table 22: Failed antibodies from in vitro technologies vs therapeutic areas
  • Table 23: Failed antibodies from in vivo technologies vs therapeutic areas
  • Table 24: Roche (Genentech(Chugai) use of antibody technologies vs attrition rates
  • Table 25: AstraZeneca (MedImmune/CAT) use of antibody technologies vs attrition rates
  • Table 26: Amgen use of antibody technologies vs attrition rates
  • Table 27: Lilly (ImClone) use of antibody technologies vs attrition rates
  • Table 28: Pfizer (Wyeth) use of antibody technologies vs attrition rates
  • Table 29: Novartis use of antibody technologies vs attrition rates
  • Table 30: GlaxoSmithKline (HGS) use of antibody technologies vs attrition rates
  • Table 31: Sanofi (Genzyme) use of antibody technologies vs attrition rates
  • Table 32: Bristol-Myers Squibb (Medarex) use of antibody technologies vs attrition rates
  • Table 33: Biogen Idec use of antibody technologies vs attrition rates
  • Table 34: Janssen (Centocor/J&J) use of antibody technologies vs attrition rates
  • Table 35: AbbVie (Abbott) use of antibody technologies vs attrition rates
  • Table 36: Kyowa Hakko Kirin Pharma use of antibody technologies vs attrition rates
  • Table 37: Merck (Schering-Plough) use of antibody technologies vs attrition rates
  • Table 38: UCB (Celltech) use of antibody technologies vs attrition rates
  • Table 39: Eisai (Morphotek) use of antibody technologies vs attrition rates
  • Table 40: Novo Nordisk use of antibody technologies vs attrition rates
  • Table 41: Ranking list of Big Pharma & Biotech companies and overall antibody attrition rates
  • Table 42: Ranking list of Big Pharma & Biotech companies and in vitro antibody attrition rates
  • Table 43: Ranking list of Big Pharma & Biotech companies and in vivo antibody attrition rates
  • Table 44: Ranking list of Big Pharma & Biotech companies and in vivo antibody preference rate
  • Table 45: Big Pharma & Biotech companies and preferred in vivo antibody technologies: humanization vs. transgenic mice

6. Addendum: Antibody Data Sheets

Back to Top