表紙
市場調査レポート

マルチコアプロセッサのガイド

A Guide to Multicore Processors, Third Edition

発行 Linley Group 商品コード 302678
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=102.06円で換算しております。
Back to Top
マルチコアプロセッサのガイド A Guide to Multicore Processors, Third Edition
出版日: 2016年05月31日 ページ情報: 英文
概要

マルチコアプロセッサは、スレッドと呼ばれる、たくさんの小さなタスクに分断することができるアプリケーションに対して、最大限の性能と柔軟性を提供します。内蔵システムにおいては、マルチコアプロセッサの最も一般的な用途はパケット処理です。パケット処理は、ルーター、セキュリティー、ストレージ、ブロードバンドインフラ、およびセルラー基地局など、幅広いネットワーク・通信機器において発生します。

当レポートでは、マルチコアプロセッサの市場を取り上げ、プロセッサ技術、マルチコアアプリケーション、各種インストラクションセットおよびマルチコアプロセッサの特徴を概括し、技術動向および市場概要をまとめるとともに、主要なベンダーの概要を提示するなど、概略以下の構成でお届けいたします。

第1章 プロセッサ技術

  • プロセッサの基礎
    • 中央演算処理装置(CPU)
    • キャッシュ
    • MMU、TLB
    • バス帯域幅
  • CPUマイクロアーキテクチャー
    • RISC VS CISC
    • エンディアンネス
    • スカラーとスーパースカラー
    • インストラクションの並べ替え
    • パイプライニングとペナルティー
    • 分岐予測
    • マルチコアプロセッサ
    • マルチスレッディング
  • メインメモリー
    • DRAMの基本
    • DDRのバージョン
    • メモリーサブシステム
  • I/Oとネットワークインターフェース
    • イーサネットインターフェース
    • PCIとPCI Express
    • RapidIO
    • USB
    • SASとSATA

第2章 マルチコアアプリケーション

  • ネットワーク・通信機器
    • 制御プレーン VS データプレーン
    • 制御プレーン処理
    • データプレーンアプリケーション
    • サービスカード
    • ネットワークストレージとRAIDコントローラー
    • セキュリティー
    • ブロードバンドインフラ
    • セルラー基地局
  • 共通のフォームファクター

第3章 標準のインストラクションセット

  • アーキテクチャーの比較
    • 技術
    • 市場における位置づけ
  • x86インストラクションセット
    • 概要
    • 初期インストラクションセット
    • 現在の拡張子
  • MIPSインストラクションセット
    • 概要
    • 初期インストラクションセット
    • その後の拡張子
  • PowerPCインストラクションセット
    • 概要
    • インストラクションセット
  • ARMインストラクションセット
    • 概要
    • 初期インストラクションセット
    • その後の拡張子
    • ARMv4アーキテクチャー

第4章 マルチコアプロセッサ

  • 内蔵マルチコアプロセッサとは?
    • 内蔵マルチコアプロセッサでないものとは?
  • 一般的な特徴
    • スタンドアローン VS 統合プロセッサ
    • マルチコアプロセッサ
    • 暗号化エンジン
    • RAIDとその他のストレージエンジン
    • パケット処理アクセラレーター
  • ベンチマーク
    • CPUベンチマーク
    • セキュリティー性能

第5章 技術・市場動向

  • 技術動向
    • アーキテクチャー
    • 統合動向
    • CPU複雑さのトレードオフ
    • メモリーアクセス
  • 市場概要
    • 市場規模、ベンダー別
    • 売上市場シェア、インストラクションセットアーキテクチャー別
    • 市場予測、部門別
    • マルチコア市場予測

第6章 Broadcom

  • 会社紹介
  • 主な特徴と性能
    • XLPおよびXLP IIプロセッサ
    • XLP I Family:XLP4xxおよびXLP8xx Series
    • XLP II Family:XLP532およびXLP964
  • 内部アーキテクチャー
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総括

第7章 Cavium

  • 会社紹介
  • 主な特徴と性能
    • Octeon IIプロセッサ
    • Octeon IIIプロセッサ
  • 内部アーキテクチャー
    • Octeon IIプロセッサ
    • Octeon IIIプロセッサ
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総括

第8章 Freescale

  • 会社紹介
  • 主な特徴と業績
    • QorIQ P3-、P4-、T4-Seriesプロセッサ
  • 内部アーキテクチャー
    • Power e500mc、Power e5500 CPU
    • Power e6500 CPU
    • セキュリティーエンジン
    • QorIQパケット処理加速
  • システム設計
    • システムインターフェース
    • 応用例
  • 開発ツール
  • 製品ロードマップ
  • 総括

第9章 Intel

  • 会社紹介
  • 主な特徴と業績
  • 内部アーキテクチャー
    • Sandy Bridge CPU
    • その他のプロセッサ技術
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総括

第10章 LSI

  • 会社紹介
  • 主な特徴と業績
  • 内部アーキテクチャー
    • ARM Cortex-A15 CPU
    • PowerPC 476FP CPU
    • Axxiaアーキテクチャー
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総括

第11章 Tilera

  • 会社紹介
  • 主な特徴と業績
  • 内部アーキテクチャー
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総括

第12章 プロセッサの比較

  • 30W未満のプロセッサ
  • 30〜50Wのプロセッサ
  • 50W超を消費するプロセッサ

第13章 総括

  • 市場および技術の動向
    • ワイヤレスインフラ
    • 企業とデータセンターネットワーキング
    • ネットワーキング制御プレーン
  • ベンダーの展望
    • Intel
    • Broadcom
    • Cavium
    • Freescale
    • 他のマルチコアプロセッサベンダー
  • 結び

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Get the Facts Quickly

"A Guide to Multicore Processors" provides an in-depth look at 32- and 64-bit high-speed embedded processors with four or more CPU cores. This completely revised report from The Linley Group contains 190+ pages of information on high-end processors from AMD, AppliedMicro, Baikal Electronics, Broadcom, Cavium, Intel, Mellanox (Tilera/EZchip), and NXP.

The report focuses on general-purpose RISC and x86 processors that have four or more CPU cores running at 1.0GHz or more, excluding specialized architectures (e.g. DSPs, NPUs). This report covers processors for embedded applications, focusing on networking, communications, storage, and security; it excludes multicore products designed for servers or for mobile devices. (We cover these processors, as well as embedded processors with fewer than four CPU cores, in other reports.)

"A Guide to Multicore Processors" delivers detailed coverage of all applicable products in AMD's Opteron A1100 family; AppliedMicro's Helix family; Broadcom's XLP II family; Cavium's Octeon III and ThunderX families; Intel's embedded Xeon and Xeon-D lines; Mellanox's Tile-Gx family; and NXP's QorIQ T series, LS1 series, and LS2 series.

This handy guide, packed with valuable information, brings you up-to-date on the newest developments in this important market and gives you the analysis you need to help choose a supplier or partner. The report also provides market-share and market-size data for the embedded and multicore markets.

"A Guide to Multicore Processors" begins with tutorials on the key technologies implemented by these products, background on the embedded market, and a discussion of the newest technology and market trends. Following these introductory chapters, the report delivers thorough coverage of all announced products in this area. For each major vendor, the report examines the performance, features, and architecture of each product, highlighting strengths and weaknesses in a consistent, easy-to-compare fashion. The report concludes with our own comparisons of these products and conclusions about which will fare best.

What's New in This Edition

Since publishing the previous edition of this report in 2014, we have updated the coverage to include many new announcements, including:

  • AMD's new Opteron A1100 family
  • AppliedMicro's Helix processors
  • More detailed coverage of Cavium's ARMv8-compatible ThunderX processors
  • NXP's newest ARM-based LS1- and LS2-series processors
  • Intel's new Xeon and Xeon D processors
  • Final 2015 market size and vendor share
  • Embedded-processor forecasts to 2020

Executive Summary

Multicore processors offer the best performance and flexibility for applications that are divisible into many small tasks, called threads. In embedded systems, the most common application for these products is networking, because each data packet can usually have its own thread. Packet processing is common in a wide range of networking and communications equipment, including routers, security appliances, storage subsystems, broadband infrastructure, and cellular base stations.

To ease programming, these multicore processors employ general-purpose instruction sets, such as x86, the Power Architecture (PowerPC), MIPS, and ARM. This characteristic distinguishes them from dedicated network processors (NPUs), which use custom instruction sets that are more difficult to program - and from packet-processing ASICs, which are not programmable at all. Most multicore embedded processors also include specialized hardware that accelerates packet-processing tasks. Thus, they are widely favored for complex networking applications that require programmability, customization, and high performance. In addition, these devices are useful for a broad range of embedded systems that require general-purpose programmability.

We estimate the total revenue from general-purpose embedded processors fell 1% in 2015 after two years of growth. This decline was largely due to China's slowdown in wireless-base-station deployments and a trend toward using more ASICs. Growth took place in other segments, however, such as security, Internet gateways, automotive, industrial, and storage.

Intel still leads the embedded-processor market by revenue. Despite their relatively high power consumption and relatively poor feature integration, Intel's products offer the industry's best single-thread performance - a big advantage in control-plane processing. The company's recent acquisition of Altera, the second-largest FPGA vendor, creates opportunities for future products that integrate embedded processors with programmable logic. In 2015, Intel also became the leading supplier of multicore processors for communications systems - a position held for many years by Freescale, which suffered from the wireless slowdown.

Swept up by a wave of industry consolidation in 2015, Freescale was acquired by NXP. The main motive was to augment NXP's positions in automotive processors and microcontrollers - markets in which Freescale also excels. But despite the China slowdown, Freescale's QorIQ embedded processors remain formidable competitors, and the company is rapidly introducing new ARM-based products to supplement the existing Power Architecture chips. Its broad line of high-performance embedded processors addresses many applications.

The third-largest embedded-processor supplier in 2015 was Broadcom, which was acquired by Avago. (The combined company operates as Broadcom Ltd.) This vendor gained share during the year, largely on the success of its ARM-based StrataGX family. The MIPS-compatible XLP family fared less well. Broadcom is pinning future hopes on its Vulcan processors, which will use a new 64-bit ARMv8-compatible CPU that will enable the company to pursue new markets. The first Vulcan chips have yet to appear, however, and the project may be affected by the layoffs, cutbacks, and reorganizations that are following the Avago merger.

Cavium, the fourth-largest embedded-processor supplier, enjoyed in 2015 another year of healthy growth. The MIPS-compatible Octeon chips are the cash cow. Although their relatively simple MIPS64-compatible CPUs lag in single-thread performance, their small size enables Cavium to create large multicore designs - up to 48 CPUs in the largest Octeon III model. Consequently, the company focuses on the data plane, where its many small CPUs and wealth of hardware accelerators are ideal. Cavium also began reaping some revenue in 2015 from its new ThunderX family, which uses custom-designed 64-bit CPUs that are ARMv8 compatible. The largest ThunderX chip also has 48 CPUs.

In addition to the NXP-Freescale and Avago-Broadcom megamergers, Mellanox acquired EZchip, which had recently acquired startup Tilera. These deals could strengthen Tilera's position and its project to make the world's largest ARM-based embedded processor, the 100-core Tile-Gx100. In the past, Mellanox has preferred to sell systems and board-level products instead of merchant silicon, so the combined company is mapping a new strategy for 2016 and beyond.

AMD entered the ARM-based embedded-processor market in 2015 with its Opteron A1100 family, and AppliedMicro followed its ARMv8-compatible Helix 1 embedded processors with the second-generation Helix 2. Both product lines have their strong points but face stiff competition from the leading vendors. Nevertheless, they are further signals of the market's strong shift to ARM by every major vendor except Intel. This transition will continue into the next decade, because many embedded systems have long lifespans, and developers need time to port their software.

Table of Contents

List of Figures

List of Tables

About the Authors

About the Publisher

Preface

Executive Summary

1 Processor Technology

  • Processor Basics
    • Central Processing Unit (CPU)
    • Caches
    • MMUs and TLBs
    • Bus Bandwidth
  • CPU Microarchitecture
    • RISC Versus CISC
    • Endianness
    • Scalar and Superscalar
    • Instruction Reordering
    • Pipelining and Penalties
    • Branch Prediction
    • Multicore Processors
    • Multithreading
  • Main Memory
    • DRAM Basics
    • DDR Versions
    • Memory Subsystems
  • I/O and Network Interfaces
  • Ethernet Interfaces
  • PCI and PCI Express
  • RapidIO
  • USB
  • SAS and SATA

2 Multicore Applications

  • Networking and Communications Equipment
    • Control Plane vs. Data Plane
    • Control-Plane Processing
    • Data-Plane Applications
    • Services Cards
    • Networked Storage and RAID Controllers
    • Security
    • Broadband Infrastructure
    • Cellular Base Stations
  • Common Form Factors

3 Standard Instruction Sets

  • Architecture Comparison

List of Figures

  • Figure 1-1. Basic processor design.
  • Figure 1-2. Simple superscalar processor design.
  • Figure 1-3. CPU pipelining examples.
  • Figure 1-4. Generic multicore processor.
  • Figure 1-5. Interleaved tasks on a multithreaded CPU.
  • Figure 1-6. DRAM evolution.
  • Figure 2-1. The control plane and the data plane.
  • Figure 4-1. Standalone and integrated general-purpose processors.
  • Figure 4-2. Typical curve of IPSec performance versus packet size.
  • Figure 5-1. Worldwide revenue market share of embedded microprocessors, 2014 and 2015.
  • Figure 5-2. Worldwide revenue market share of embedded processors for communications, 2014 and 2015.
  • Figure 5-3. Worldwide revenue market share of embedded processors by instruction set, 2015.
  • Figure 5-4. Forecast for embedded-processor revenue by application, 2015-2020.
  • Figure 5-5. Forecast for embedded-processor revenue by communications sub-segment, 2015-2020.
  • Figure 6-1. Block diagram of AppliedMicro Potenza CPU.
  • Figure 6-2. Block diagram of AppliedMicro Helix 1 processor.
  • Figure 6-3. Block diagram of a gateway based on AppliedMicro Helix 1.
  • Figure 7-1. Broadcom XLP II family.
  • Figure 7-2. Broadcom Interchip Coherency Interface (ICI 2.0).
  • Figure 7-3. VMM execution mode in MIPS64 Release 5.
  • Figure 7-4. Block diagram of Broadcom GC4400 CPU core.
  • Figure 7-5. Block diagram of Broadcom XLP500-series processor.
  • Figure 7-6. Line card based on Broadcom XLP980.
  • Figure 8-1. Cavium Octeon III family.
  • Figure 8-2. Block diagram of Cavium Octeon III CN7890.
  • Figure 8-3. Block diagram of Cavium ThunderX CN8890.
  • Figure 8-4. Block diagram of ParPro O3E-110 card using CN7890.
  • Figure 9-1. Positioning for Intel embedded processors.
  • Figure 9-2. Block diagram of Intel Haswell microarchitecture.
  • Figure 9-3. Block diagram of Intel Haswell embedded Xeon E5-2680v3.
  • Figure 9-4. Dual-socket system design based on Intel Xeon E5v3.
  • Figure 9-5. Block diagram of Intel Xeon D.
  • Figure 10-1. Block diagram of Mellanox Tile-Gx72.
  • Figure 11-1. NXP QorIQ T- and LS-series communications processors.
  • Figure 11-2. Microarchitecture of NXP Power e6500 CPU.
  • Figure 11-3. Block diagram of NXP QorIQ LS1088A.
  • Figure 11-4. Second-generation Data Path Acceleration Architecture.
  • Figure 12-1. Block diagram of AMD Opteron A1170.

List of Tables

  • Table 2-1. Some common single-board-computer standards.
  • Table 5-1. Worldwide revenue of the top eight vendors of embedded micro-processors.
  • Table 5-2. Worldwide revenue of the top six vendors of embedded processors for communications systems.
  • Table 5-3. Forecast for embedded-processor revenue by application, 2015-2020.
  • Table 5-4. Forecast for embedded-processor revenue by communications sub-segment, 2015-2020.
  • Table 6-1. Key parameters for AppliedMicro Helix 1 processors.
  • Table 7-1. Key parameters for Broadcom XLP500 series.
  • Table 7-2. Key parameters for Broadcom's XLP900 series.
  • Table 8-1. Key parameters for Cavium Octeon III CN78xx processors.
  • Table 8-2. Key parameters for Cavium Octeon III CN77xx processors.
  • Table 8-3. Key parameters for Cavium Octeon III CN73xx and CN72xx.
  • Table 8-4. Key parameters for Cavium ThunderX processors.
  • Table 9-1. Intel code names and product numbers.
  • Table 9-2. Intel embedded multicore processors.
  • Table 9-3. Key parameters for Intel Xeon E5v3 embedded processors.
  • Table 9-4. Key parameters for Intel Xeon D embedded processors.
  • Table 9-5. Key parameters for Intel DH89xx Coleto Creek chips.
  • Table 10-1. Key parameters for Mellanox Tile-Gx processors.
  • Table 11-1. Key parameters for NXP QorIQ T4 processors.
  • Table 11-2. Key parameters for QorIQ LS1 quad- and octa-core processors.
  • Table 11-3. Key parameters for QorIQ LS2 processors with Cortex-A57.
  • Table 11-4. Key parameters for QorIQ LS2 processors with Cortex-A72.
  • Table 12-1. Key parameters for AMD Opteron A1100 processors.
  • Table 13-1. Comparison of sub-30W multicore processors.
  • Table 13-2. Comparison of 30-50W multicore processors.
  • Table 13-3. Comparison of 50-100W multicore processors.
  • Table 13-4. Comparison of multicore processors consuming more than 100W.
Back to Top