表紙
市場調査レポート

サーバープロセッサーガイド:第4版

A Guide To Server Processors - Fourth Edition

発行 Linley Group 商品コード 302674
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=106.02円で換算しております。
Back to Top
サーバープロセッサーガイド:第4版 A Guide To Server Processors - Fourth Edition
出版日: 2015年06月30日 ページ情報: 英文
概要

サーバープロセッサーの市場は常に変化を続けており、新たなベンダーに門戸を開いています。メガデータセンターやクラウドコンピューティングの出現により、サーバーの経済性はもはや資本支出だけを考慮すればいいというものではなく、高性能性に加え、資本支出と運用コストのバランスが求められるようになっています。ワット当たりの性能、そしてワット当たりドル当たりの性能が、大規模なデータセンターにおける購入の意思決定を促す新たな基準となっています。また、物理的密度も重要性を増しており、これがさらなる拡張性を促すとともに、貴重なラックスペースにさらに多くのノードを組み込めるマイクロサーバーなどの新たなフォームファクターを生み出しています。

当レポートでは、サーバープロセッサーの技術・製品・市場について調査し、サーバープロセッサー技術およびサーバーシステム技術の詳細、技術および市場の最新動向、主要ベンダーとその製品のプロファイルなどをまとめています。

エグゼクティブサマリー

第1章 プロセッサー技術

  • プロセッサーの基本
    • 中央処理装置(CPU)
    • キャッシュ
    • MMUとTLB
    • バス帯域幅
  • CPUマイクロアーキテクチャー
    • RISC VS CISC
    • エンディアンネス
    • スカラーおよびスーパースカラー
    • インストラクションの並べ替え
    • パイプライニングとペナルティー
    • 分岐予測
  • サーバープロセッサーおよび技術
    • サーバープロセッサーとは?
    • マルチコア
    • マルチスレッディング
    • システムバス
    • メモリーサブシステム
    • PCI Express
  • サーバーベンチマーク
    • SPECベンチマーク
    • TPCベンチマーク
    • VMmark
    • HPL
    • ApacheBench

第2章 インストラクションセット

  • x86インストラクションセット
    • 背景
    • 初期インストラクションセット
    • 拡張
  • ARMインストラクションセット
    • 概要
    • 初期インストラクションセット
    • ARMv7
    • ARMv8

第3章 サーバーシステム技術

  • 基本的なサーバー技術
    • メインメモリー
    • システムロジックチップセット
    • 基板管理コントローラー
    • マルチソケットシステム設計
  • ストレージ
    • RAID
    • ストレージインターフェース
  • 高性能コンピューティング
    • InfiniBand
    • RDMAオーバーイーサネット
    • MPIとOFED
  • ネットワーキング
    • ストレージネットワーキング
  • サーバーフォームファクター
  • オペレーティングシステム
    • Windowsサーバー
    • Linuxサーバー
  • 仮想化
    • ハイパーバイザーソフトウェア

第4章 技術・市場の動向

  • 技術動向
    • X86 VS ARM
    • SoC統合
    • メインメモリーのボトルネック
    • マイクロサーバー
    • システムファブリック
    • スケールアップ VS スケールアウト
    • クラウドコンピューティングワークロード
    • 高性能コンピューティング
  • 市場展望
    • クラウドコンピューティング
    • オープンコンピューティング
    • 市場予測・市場区分
    • プロセッサーの収益とASP
    • ARMのアドレサブル市場
    • 市場シェア

第5章 Intel

  • 企業背景
  • 製品ライン:概要
  • 主な特徴と性能
    • Atomベースプロセッサー
    • HaswellベースXeonシングルソケットプロセッサー
    • BroadwellベースXeonシングルソケットプロセッサー
    • HaswellベースXeonマルチソケットプロセッサー
  • 内部アーキテクチャー
    • HaswellとBroadwell
    • Atom Silvermont
  • システム設計
    • Xeon E3v3
    • Atom C2000
    • Xeon D1500
    • Xeon E5v3
    • Xeon E7v3
  • 製品ロードマップ
    • Xeon E3
    • Atom・Xeon D
    • Xeon E5・E7
    • FPGA集積製品
  • 総論

第6章 AMD

  • 企業背景
  • 製品ライン:概要
  • 主な特徴と性能
    • メインストリームサーバープロセッサー
    • マイクロサーバープロセッサー
  • 内部アーキテクチャー
    • BulldozerおよびPiledriver CPU
    • Jaguar CPU
    • ARMプロセッサー
  • システム設計
    • Opteronシステム設計
    • A1100システム設計
  • 製品ロードマップ
  • 総論

第7章 AppliedMicro

  • 企業背景
  • 主な特徴と性能
  • 内部アーキテクチャー
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総論

第8章 Cavium

  • 企業背景
  • 主な特徴と性能
  • 内部アーキテクチャー
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総論

第9章 IBM

  • 企業背景
  • 主な特徴と性能
  • 内部アーキテクチャー
  • システム設計
  • 開発ツール
  • 製品ロードマップ
  • 総論

第10章 HPCコプロセッサーベンダー

  • Intel Xeon Phi
  • Nvidia Tesla
  • AMD FirePro
    • 企業背景
    • 主な特徴と性能
    • 設計の詳細
    • 製品ロードマップ
    • 総論

第11章 その他のベンダー

  • Broadcom
  • HiSilicon
  • Qualcomm

第12章 プロセッサーの比較

  • マイクロサーバープロセッサー
  • シングルソケットプラットフォーム
  • 2ソケットプラットフォーム
  • 4ソケットプラットフォーム
    • 性能
    • 集積

第13章 総論

  • 市場の展望
  • ベンダーの展望
  • 最終考察

付録

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Analyzing the Processors for Scalable Computing

The server-processor market is changing, creating openings for new vendors. With the emergence of mega data centers and cloud computing, server economics no longer focus on capital expenses alone. In addition to high performance, server customers need to balance capital expenses and operating costs. Performance per watt and performance per watt per dollar are the new metrics driving purchasing decisions in large data centers. Physical density is also growing in importance, driving greater scalability and new form factors such as microservers that pack more nodes into precious rack space.

In this new era, backward compatibility is less important than before and innovation takes the front seat. Intel and AMD - the incumbent vendors - continue to innovate and advance their Xeon and Opteron designs, respectively. Integration, microarchitecture advances, and process technology are the primary factors in x86 evolution. But new entrants are eyeing cloud-computing environments as an opening for CPU architectures that are more power efficient.

Product Information Tempered With In-Depth Analysis

This report covers merchant-market processors designed specifically for servers. We provide detailed coverage of Intel's Xeon D, E3, E5, and E7 product lines as well as its new Atom products for microservers. We cover AMD's Opteron family, including Opteron X for microservers and the company's new ARM processor. Other ARM-compatible products include AppliedMicro's X-Gene 1 and X-Gene 2, Broadcom's Vulcan, and Cavium's ThunderX. This edition adds coverage for IBM's Power8 processors and upcoming server processors from HiSilicon. We also speculate about future entries from Qualcomm and others. In addition, we continue our coverage of coprocessors (or accelerators) for high-performance computing (HPC), including Intel's Xeon Phi, Nvidia's Tesla, and AMD's FirePro.

This report analyzes each vendor and each product, probing their strengths and weaknesses and presenting key details in a consistent, easy-to-compare fashion. We examine processor performance, integration, power dissipation, and overall system design. Where possible, we also evaluate the vendors' product roadmap.

Make Informed Decisions

As the leading vendor of technology analysis for microprocessors, The Linley Group has the expertise to deliver a comprehensive look at these technologies. Our analysts use their broad experience to deliver the technical and strategic information you need to make informed business decisions. And in case you are not familiar with all of the concepts involved in processor and server designs, the report includes several introductory chapters that define and describe terms such as superscalar, multithreading, pipelines, and virtualization.

This report is written for:

  • OEMs that need to make strategic vendor selections
  • ODMs supplying cloud-computing and HPC customers
  • Data-center architects looking at alternative platforms
  • Marketing and engineering staff at companies that sell other server components
  • Financial analysts who desire a detailed analysis and comparison of both incumbents and new vendors

What's New in This Edition

This fourth edition of "A Guide to Server Processors" has been extensively updated to include the latest vendor disclosures. Here are some of the many changes you will find:

  • Coverage of many new products from Intel, including Xeon D Xeon E5/E7v3 (Haswell), Xeon E5 4600, Xeon E3v3 (Haswell), and greater coverage of Xeon Phi (Knights Landing)
  • New coverage of AMD's roadmap for x86 and ARMv8 processors
  • New coverage of Broadcom's Vulcan CPU for future server processors
  • New coverage of IBM's Power8 and the OpenPower Foundation
  • Updated coverage of AppliedMicro's X-Gene 1 processor, the server industry's first ARMv8 product, and new coverage of its successor, X-Gene 2
  • Updated coverage of Cavium's ThunderX, a multicore ARMv8 design based on the company's successful Octeon III architecture
  • Extensive updates to company information, roadmaps, and analysis
  • Forecast for ARM and x86 server processors through 2019
  • New coverage of HiSilicon's server processor

Executive Summary

Cloud computing and hyperscale data centers operated by companies like Amazon, Apple, Facebook, Google, and Microsoft are changing the market for server processors, creating opportunities for new vendors. In the past, raw processor performance and capital expenses were the vital metrics. Today, long-term operating costs are equally important. Performance per watt and performance per watt per dollar are the new metrics driving purchasing decisions in large data centers. Physical density is also growing in importance, driving greater scalability and new systems such as microservers that pack more nodes into precious rack space.

Although software compatibility remains important, data-center customers are more willing than before to adopt new platforms if the cost savings and performance are compelling. This opening has created an opportunity for ARM and its numerous licensees to challenge the incumbent x86 architecture. But this drama is unfolding slower than expected. As 2015 dawned, only one 64-bit ARM server processor - AppliedMicro's X Gene - was actually shipping in systems. Although more are coming soon, Intel is responding vigorously with new versions of its Xeon and Atom-based server processors.

Meanwhile, a new challenger has emerged: IBM. In partnership with its rapidly growing OpenPower Foundation, the company is offering its Power server processor on the merchant market for the first time. Because the server-processor market exceeds $9 billion annually, these newcomers can build a profitable business by taking only a few percentage points of share from Intel.

Server processors are raising performance using more CPU cores and more threads, which are extremely useful for parallel processing - running multiple tasks simultaneously. Intel's Xeon products now offer as many as 18 cores per chip. Cavium's 48-core ThunderX CN88xx is the largest ARM-compatible processor announced to date. Intel's Hyper-Threading technology enables a CPU core to execute two threads at once, and Broadcom is developing ARM-compatible server processors that can run four threads per core. Together with advances in parallel-programming tools, these highly threaded processors are valuable for big-data analytics, web servers, scientific computing, transactional databases, and many other applications.

For low-cost processors targeting microservers, system-on-a-chip (SoC) design is now common. By integrating several functions that previously required two or more separate chips, SoCs can cut costs, reduce power consumption, and save board space. Those functions typically include memory interfaces and I/O interfaces. More often, they also include hardware accelerators for specialized tasks. All ARM server processors announced to date use SoC designs. Intel's new Xeon D combines the CPU and south-bridge chips in a single package, mimicking these SoC products.

In the past year, Intel has refreshed its entire Xeon line, moving to 22nm FinFET technology to reduce cost and power while improving transistor performance. By contrast, all non-Intel server processors are still manufactured in 28nm or older technologies and lack FinFETs. The sole exception is IBM's Power8, which is manufactured in a 22nm silicon-on-insulator (SOI) process. IBM has always owned and operated its own fabs but recently transferred them to GlobalFoundries, leaving Intel as the only vendor still manufacturing its own server processors for the merchant market. Intel's 14nm process is already in volume production, but the low-end Xeon D is the only server processor using that node.

The other x86 vendor, AMD, is more static. Struggling financially, the company has managed only minor updates to its Opteron x86 server processors in recent years, falling further behind Xeon in performance and performance per watt. As a result, Opteron's market share has dropped to 3%. The company's server hopes rest on a new CPU micro-architecture, code-named Zen, that should reduce the performance gap. New CEO Lisa Su recently prioritized Zen over a new ARM project (K12) in hopes of keeping Zen-based products on track for 2016 production. In the meantime, AMD's first ARM-compatible server processor, the Opteron A1100 (Seattle), was originally scheduled to ship in 2014, but with little customer interest, production has been delayed until 2015.

In late 2014, AppliedMicro's X-Gene became the first 64-bit ARM server processor to reach the market. It is a highly integrated eight-core SoC that inherits several features from the company's high-performance embedded processors. X-Gene 2 moves to newer 28nm technology and is scheduled for production in 3Q15.

Cavium is the next ARM server-processor vendor to reach the market. Its ThunderX CN88xx chips have been sampling since 4Q14 and are sched-uled for production in 3Q15. They have up to 48 CPU cores, allowing them to match the per-socket performance of low-end Xeon E5 products. ThunderX is well suited to scale-out applications (such as web servers) that can exploit its high parallelism.

Other ARM-compatible processors are in the pipeline. Broadcom has been developing Vulcan, a high-end ARM-compatible CPU core, for embedded and server applications; we expect the first Vulcan-based products to enter production in 2016, although the pending Avago deal may disrupt these plans. HiSilicon, a subsidiary of Huawei, has demonstrated a 16-core ARM server processor that could reach production this year. Qualcomm has confirmed its plans to develop ARM-compatible server processors but disclosed no timeframe for its entry.

Table of Contents

List of Figures

List of Tables

About the Authors

About the Publisher

Preface

Executive Summary

1 Processor Technology

  • Processor Basics
    • Central Processing Unit (CPU)
    • Caches
    • MMUs and TLBs
    • Bus Bandwidth
  • CPU Microarchitecture
    • RISC Versus CISC
    • Endianness
    • Scalar and Superscalar
    • Instruction Reordering
    • Pipelining and Penalties
    • Branch Prediction
  • Server Processors and Technologies
    • What Is a Server Processor?
    • Multicore
    • Multithreading
    • System Buses
    • Memory Subsystem
    • PCI Express
  • Server Benchmarks
    • SPEC Benchmarks
    • TPC Benchmarks
    • VMmark
    • HPL
    • ApacheBench

2 Instruction Sets

  • x86 Instruction Set
    • Background
    • Initial Instruction Set
    • Modern Extensions
  • ARM Instruction Set
    • Background
    • Initial Instruction Set
    • ARMv7 Architecture
    • ARMv8 Architecture

3 Server System Technology

  • Basic Server Architecture
    • Main Memory

List of Figures

  • Figure 1-1. Basic CPU design.
  • Figure 1-2. Simple superscalar processor design.
  • Figure 1-3. CPU pipelining examples.
  • Figure 1-4. Block diagram of a typical server processor.
  • Figure 1-5. Interleaved tasks on a multithreaded CPU.
  • Figure 3-1. Typical single-processor server architecture.
  • Figure 3-2. Typical multisocket server architecture.
  • Figure 3-3. Rack-mount servers and a standard-size rack.
  • Figure 3-4. Lenovo's BladeCenter H.
  • Figure 3-5. Typical blade-server architecture.
  • Figure 4-1. Dell and HP microservers.
  • Figure 4-2. Cisco M-Series modular servers.
  • Figure 4-3. Facebook's Yosemite design.
  • Figure 4-4. Server-processor shipments by segment, 2013-2019.
  • Figure 4-5. Server-processor revenue by form factor, 2013-2019.
  • Figure 5-1. Intel server-processor roadmap.
  • Figure 5-2. Block diagram of Intel Haswell microarchitecture.
  • Figure 5-3. Block diagram of Intel Haswell server.
  • Figure 5-4. Block diagram of Intel Silvermont microarchitecture.
  • Figure 5-5. Server design based on Intel Xeon E3-1200v3.
  • Figure 5-6. Server design based on Intel Atom C2570.
  • Figure 5-7. Server design based on Intel Xeon D1500.
  • Figure 5-8. Dual-socket server design based on Intel Xeon E5-2600.
  • Figure 5-9. Four-socket server design based on Intel Xeon E7v3.
  • Figure 6-1. Block diagram of AMD Bulldozer/Piledriver CPU module.
  • Figure 6-2. Block diagram of AMD Bulldozer/Piledriver microarchitecture.
  • Figure 6-3. Block diagram of AMD Opteron X server chip.
  • Figure 6-4. Block diagram of AMD Opteron A1100 server chip.
  • Figure 6-5. AMD Opteron 4300 two-socket system design.
  • Figure 6-6. AMD Opteron 6300 four-socket system design.
  • Figure 7-1. Block diagram of AppliedMicro Potenza CPU core.
  • Figure 7-2. Block diagram of AppliedMicro X-Gene 2 processor.
  • Figure 7-3. Gigabyte Micro-ATX board with AppliedMicro X-Gene 1.
  • Figure 8-1. Block diagram of Cavium ThunderX CN88xx.
  • Figure 8-2. Dual-socket system design using Cavium ThunderX.
  • Figure 9-1. IBM Power8 memory architecture.
  • Figure 9-2. Block diagram of IBM Power8 CPU core.
  • Figure 9-3. IBM Power8 multiprocessor cluster.
  • Figure 10-1. Intel Xeon Phi coprocessor card.
  • Figure 10-2. Microarchitecture of Intel Xeon Phi core.
  • Figure 10-3. Conceptual block diagram of Xeon Phi coprocessor.
  • Figure 10-4. Block diagram of Tesla GK110 SMX array.
  • Figure 10-5. Block diagram of a GCN compute unit.

List of Tables

  • Table 1-1. Selected SPEC benchmarks.
  • Table 5-1. Summary of selected Intel x86 server processors.
  • Table 5-2. Key parameters for selected single-socket Intel server processors.
  • Table 5-3. Key parameters for selected dual-socket Intel Xeon processors.
  • Table 5-4. Key parameters for selected Intel multisocket Xeon processors.
  • Table 6-1. Key parameters for AMD Piledriver-based Opteron processors.
  • Table 6-2. Key parameters for selected AMD Opteron processors.
  • Table 6-3. Key parameters for AMD microserver processors.
  • Table 6-4. Key parameters for AMD SR56x0 north-bridge chips.
  • Table 6-5. Key parameters for AMD SP5100 south-bridge chip.
  • Table 7-1. Key parameters for AppliedMicro X-Gene processors.
  • Table 8-1. Key parameters for Cavium ThunderX server processors.
  • Table 9-1. Key parameters for IBM Power8 merchant processors.
  • Table 10-1. Key parameters for Intel Xeon Phi coprocessor cards.
  • Table 10-2. Key parameters for Nvidia Tesla coprocessor cards.
  • Table 10-3. Key parameters for AMD FirePro S-series coprocessor cards.
  • Table 11-1. Additional erver-processor vendors.
  • Table 12-1. Comparison of selected microserver processors.
  • Table 12-2. Comparison of high-performance single-socket processors.
  • Table 12-3. Comparison of processors for dual-socket servers.
  • Table 12-4. Comparison of processors for four-socket servers.
Back to Top