お知らせ :東京証券取引所JASDAQスタンダード市場への新規上場に関するお知らせ

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
824053

医療用マイクロボットの世界市場:ドラッグデリバリ関連の技術進歩、治療向け活用方法、市場機会の分析

Global Microbots Drug Delivery Advances, Therapeutic Applications & Opportunity Insight 2025

出版日: | 発行: KuicK Research | ページ情報: 英文 120 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=104.84円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。制限内容はお問合せください。
Multi-User License: 会社全体での使用権

医療用マイクロボットの世界市場:ドラッグデリバリ関連の技術進歩、治療向け活用方法、市場機会の分析
出版日: 2019年04月16日
発行: KuicK Research
ページ情報: 英文 120 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、世界の医療用マイクロボット市場について分析し、マイクロボットの概要や現在の技術水準、技術進歩・市場成長の推移、医療分野での活用状況、主な技術・市場促進要因、今後の市場発展の方向性などについて調査しております。

第1章 マイクロボットの概要

  • マイクロボットの概略
  • マイクロボットの歴史

第2章 マイクロボットの設計

  • 設計
  • 制御

第3章 マイクロボットの駆動方法

  • 電磁アクチュエータ (EMA)
  • MEMSベースの磁気式アクチュエータ

第4章 マイクロボットの作動機構

第5章 マイクロボットの実生活上の用途

  • ヘビ型マイクロボット
  • SWARM
  • HAMR (Harvard's Ambulatory Micro Robot)
  • Microbees
  • ViRob
  • Micro-Scallops

第6章 マイクロボット:医療・バイオテクノロジー分野での用途

  • 疾患診断/画像診断
  • テレメトリー (遠隔測定)
  • 標的療法
    • ドラッグデリバリ (薬剤送達)
    • 小線源治療
    • ハイパーサーミア (がん温熱治療)/熱アブレーション
    • 幹細胞送達 (デリバリ)
  • 低侵襲手術
  • 組織工学
  • 細胞操作
  • 創傷治癒
  • 物体除去
    • 切除 (アブレーション)
    • 生検 (バイオプシー)
  • 制御可能な構造

第7章 マイクロボットのニーズ:標的型ドラッグデリバリー・メカニズムへの推進剤

第8章 医療用マイクロボット関連の技術進歩

  • マイクロタンブラー (μTUM)
  • フォトリソグラフィー
  • 3Dプリンティング技術
  • 生体適合性/生分解性材料
  • ワイヤレス通信

第9章 マイクロボット:がん治療

  • 腫瘍細胞向けドラッグデリバリー (薬剤送達)
  • がん治療向け低侵襲手術

第10章 眼科向けマイクロボット

  • マイクロボットを用いたドラッグデリバリー
  • 低侵襲・眼内治療向けマイクロボット

第11章 血液循環系向けマイクロボット

  • マイクロボットを用いた、静脈へのドラッグデリバリ
  • 低侵襲心血管手術

第12章 マイクロボット:消化管 (GI) 向け治療・診断手法

  • マイクロボットを用いた、消化管向けドラッグデリバリー
  • マイクロボットを用いた、消化管向け診断方法
  • 消化管向け低侵襲手術

第13章 腎不全治療用のマイクロボット

  • 腎臓系内部の標的型ドラッグデリバリ
  • 腎臓系の画像診断支援用マイクロボット

第14章 内耳用 (聴力回復向け) のマイクロボット

第15章 マイクロボットによる神経症の解決

  • 自己洗浄型シャント:水頭症の治療用
  • ドラッグデリバリ用マイクロボットによる腺窩性小梗塞の治療

第16章 マイクロボット:キャリア細胞から幹細胞へ

第17章 ドラッグデリバリ用のマイクロボット

  • ドラッグデリバリ用・移動性粒子
  • マイクロボット式ドラッグデリバリ:様々な手法

第18章 世界のマイクロボット式ドラッグデリバリ市場のダイナミクス

  • マイクロボット研究の促進要因
  • マイクロボット式ドラッグデリバリ市場の課題

第19章 知的所有権 (IP) と商用利用

第20章 医療用マイクロボットの将来像

目次

Report Highlights:

  • Overview of Microbots
  • Real Life Application of Microbots
  • Microbots: Application In Medicine & Biotechnology
  • Need of Microbots : Thrust To Targeted Drug Delivery Mechanism
  • Technological Advancement in Medical Microrobotics
  • Microbot Drug Deliver by Indication/Therapy: Cancer, Stem Cell Therapy, Blood Circulatory System, Neurological Problems & Others

"Global Microbots Drug Delivery Advances, Therapeutic Applications & Opportunity Insight 2025" report gives comprehensive insight on various issues involved with the research, development and commercialization of microrobots for the application of targeted drug delivery. Report highlights on going advancements in the field of medical microrobots and their relevance with respect to multiple indication and therapies.

Medical robotics is a very promising new branch. It is a field that uses tiny robots to travel inside a patient and carry out surgery, diagnosis or drug delivery. They would have the highest scientific and societal impacts on healthcare and bioengineering applications. Milli/submilli/ micro robots are the best alternative to existing medical devices (flexible endoscopes and catheters), mobile medical milli/microrobots has the ability to access small and complex regions of the human body like blood capillaries, gastrointestinal (GI), brain, spinal cord and inside the eye while being minimally invasive. Through microrobots it is possible to access unprecedented sub millimeter size regions inside the human body which has not yet been possible by any conventional medical devices.

The most promising application of microrobots in biomedical field is for targeted drug delivery which allows doctors to inject or dispense drugs to specific or hard-to-reach areas in the body that need them. Targeted therapy boosts the concentration of therapeutics, for instance, drugs, proteins, genes, mRNA, stem cells, radioactive seeds and imaging contrast agents in a specific targeted site inside the body while keeping the side effects to a minimal level in rest of the body. Furthermore, microbots can be controlled by the clinicians which help them control the release kinetics of the drug and modulate the concentration at the therapeutic window. This adjustment would lead to prolong effect of single dose administration at the targeted region.

All the traditional methods of treatment that are presently used don't have the potential to reach some of the inaccessible places in the human body. So whenever there is some problem in the hard-to-reach places of the body it is always a guesswork, for instance brain or neurological related concern. Even though there are advanced technologies like CT scan and MRI, these technologies provide only few images of the problematic zone in the brain but nothing concrete. There are still no technologies which can penetrate the blood brain barrier and perform a diagnosis.

Microrobots have lot of advantages in the biomedical field due to its miniature structure. It has the ability to go inside the body and reach inaccessible places and collect tissue samples to further analyze. For conducting biopsy with microrobots, especially for bone marrow biopsy or bone biopsy, there is no need for the patient to go through surgery. Also it is much less painful. In prostate biopsy with needles, multiple needle biopsies are taken at one time from the prostate gland. Sometimes to reach the prostate, a probe is inserted into the rectum. While microbots are so tiny there is no need for these painful procedures. Microbots go to the targeted site, grab onto tissue sample and taken out of the body.

In the near future microbot will definitely occupy the targeted drug delivery and minimally invasive surgery arena. As these are the most sought for and demanding line of work. Targeted drug delivery and minimally invasive surgeries will not only be less painful for the patient but will also help in cutting the healthcare expenditure. This will definitely draw the attention of the government towards the usefulness of microbots and more grants may be released for R&D on microrobotics.

Also, with growing research and development larger companies working on robotics will bend towards the medical use of the microrobots, hence providing institutes with funding to continue their research to better their product. In this fast forward and technologically driven era, microbots are meant to be the future answer to the medicinal queries and distress. With minimally to non- invasive surgeries it will be easy to treat any age of patient with complicated health conditions also. At present the microbots might be going through rough patch but it will slow transition into the best treatment method.

Table of Contents

1. Overview of Microbots

  • 1.1 Introduction to Microbots
  • 1.2 History & Evolution of Microbots

2. Design Of Microbots

  • 2.1 Design
  • 2.2 Control

3. Actuation Of Microbots

  • 3.1 Electromagnetic Actuators (EMA)
  • 3.2 MEMS Based Magnetic Actuator

4. Microbots Working Mechanism

5. Real Life Application of Microbots

  • 5.1 Snake-Like Microbot
  • 5.2 SWARM
  • 5.3 Harvard's Ambulatory Micro Robot (HAMR)
  • 5.4 Microbees
  • 5.5 ViRob
  • 5.6 Micro-Scallops

6. Microbots: Application In Medicine & Biotechnology

  • 6.1 Disease Diagnosis/Imaging
  • 6.2 Telemetry
  • 6.3 Targeted Therapy
    • 6.3.1 Drug Delivery
    • 6.3.2 Brachytherapy
    • 6.3.3 Hyperthermia & Thermoablation
    • 6.3.4 Stem Cell Delivery
  • 6.4 Minimally Invasive Surgery
  • 6.5 Tissue Engineering
  • 6.6 Cell Manipulation
  • 6.7 Wound Healing
  • 6.8 Material Removal
    • 6.8.1 Ablation
    • 6.8.2 Biopsy
  • 6.9 Controllable Structures

7. Need of Microbots : Thrust To Targeted Drug Delivery Mechanism

8. Technological Advancement in Medical Microrobotics

  • 8.1 Microtumblers (µTUMs)
  • 8.2 Photolithography
  • 8.3 3D Printing Techniques
  • 8.4 Biocompatible & Biodegradable Materials
  • 8.5 Wireless communication

9. Microbots: Cancer Treatment

  • 9.1 Drug Delivery to Tumor Cells
  • 9.2 Minimally Invasive Surgery in Cancer Treatment

10. Microbots in Ophthalmology

  • 10.1 Drug Delivery Using Microbots
  • 10.2 Microrobots For Minimally Invasive Intraocular Therapies

11. Microbots in Blood Circulatory System

  • 11.1 Drug Delivery to Arteries via Microbots
  • 11.2 Minimally Invasive Cardiovascular Surgery

12. Microbots: Treatment & Diagnosis in Gastrointestinal Tract

  • 12.1 Drug Delivery in GI Tract through Microbots
  • 12.2 Diagnosis of GI Tract Using Microbots
  • 12.3 Minimally Invasive Surgery in GI Tract

13. Microbots in Treating Renal Ailments

  • 13.1 Targeted Drug Delivery Inside Renal System
  • 13.2 Microbots Assisting Renal System Imaging

14. Microbots inside the Ear (Hearing Restoration)

15. Microbots Fixing Neurological Problems

  • 15.1 Self Cleaning Shunt: Treating Hydrocephalus
  • 15.2 Drug-Delivering Microbots To Treat Lacunar Strokes

16. Microbots: Carrier of Stem Cells

17. Microbots in Drug Delivery

  • 17.1 Locomotive Drug Delivery Particle
  • 17.2 Different Modes Of Microbot Drug Delivery

18. Global Microbot Drug Delivery Market Dynamics

  • 18.1 Driving Force for Microbot Research
  • 18.2 Microbot Drug Delivery Market Challenges

19. Intellectual Property & Commercialization

20. Future of Microbots in Medicine

List of Figures

  • Figure 1- 1: Evolution of Microbots
  • Figure 2-1: Major Functions of Microrobots
  • Figure 2-2: Main Approaches Of Designing, Building & Controlling Microrobots
  • Figure 2-3: Examples of On-Board & Off-Board Approaches to Mobile Microrobot Actuation & Control in 3-D
  • Figure 2-4: Microbots Classification On The Basis Of Material
  • Figure 3-1: Actuators Used In Microbots
  • Figure 3-2: Different Types of Actuation Approaches
  • Figure 4-1: Locomotion of Microbots Inspired By Microganisms
  • Figure 4-2: Approaches to Mimic Bacterial & Eukaryotic Flagella In Microbots
  • Figure 5-1: Timeline Showing the Microrobot Systems, 1996-2014
  • Figure 6-1: Applications of Microbots in Biomedical & Bioengineering
  • Figure 6-2: Microbot Used As Telemetry
  • Figure 6-3: Potential Application of Targeted Therapy by Microbots
  • Figure 6-4: Targeted Drug Delivery by Microrobotics Swarm
  • Figure 6-5: Applications of Microrobotics Cell Application
  • Figure 6-6: Material Removal by Microbots
  • Figure 6-7: Microbots: Possible Uses as Controllable Structures
  • Figure 8-1: Types of 3-D Bioprinting Technologies Based On Working Principle
  • Figure 8-2: Steps of 3-D Bioprinting Process
  • Figure 8-3: Concept of Magnetic Actuated Drug Delivery
  • Figure 9-1: Process of Microbot Drug Delivery for Cancer Treatment
  • Figure 9-2: Making Of Magnetized Spirulina for Treating Cancer
  • Figure 10-1: Ocular Disposition of Topically Applied Formulation to the Eye
  • Figure 11-1: Cage Shaped Microbot in the Utilization of Drug Delivery System
  • Figure 11-2: Difference between angioplasty & microbot assisted surgery
  • Figure 12-1: Challenges in Delivering Drug to GI Tract
  • Figure 15-1: SCS Ability to Prevent Blockage on a Shunt Opening (%)
  • Figure 15-2: Advantages of SCS
  • Figure 15-3: Advantages of Drug-Delivering Microbots to Treat Lacunar Strokes
  • Figure 16-1: Use of Microbot in Stem Cell Delivery
  • Figure 17-1: Objectives for Drug Delivery Particles
  • Figure 18-1: Drivers of Microbot Research
  • Figure 18-2: Unique Multivalent Functionalities of Microbots
株式会社グローバルインフォメーション
© Copyright 1996-2021, Global Information, Inc. All rights reserved.