無料セミナー : 2020年3月4日『Future of Immuno-Oncology 免疫腫瘍学の未来』 DelveInsight Business Research共同開催

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

世界の癌チロシンキナーゼ阻害薬市場 & 臨床パイプライン展望 2020年

Global Cancer Tyrosine Kinase Inhibitors Market & Clinical Pipeline Outlook 2020

発行 KuicK Research 商品コード 365718
出版日 ページ情報 英文 1100 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=111.33円で換算しております。

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。制限内容はお問合せください。
Multi-User License: 会社全体での使用権

Back to Top
世界の癌チロシンキナーゼ阻害薬市場 & 臨床パイプライン展望 2020年 Global Cancer Tyrosine Kinase Inhibitors Market & Clinical Pipeline Outlook 2020
出版日: 2016年08月05日 ページ情報: 英文 1100 Pages
概要

当レポートでは、世界の癌チロシンキナーゼ阻害薬市場について調査分析し、概要、利点、応用、将来の見通し、臨床パイプライン、前臨床段階の製品など、体系的な情報を提供しています。

第1章 チロシンキナーゼ阻害薬の起源

第2章 チロシンキナーゼ:概要

第3章 チロシンキナーゼ阻害薬:癌標的療法の有望な手段

第4章 チロシンキナーゼ受容体の種類

  • 上皮成長因子受容体
    • 上皮成長因子受容体の種類
    • 上皮成長因子受容体 & リガンド
    • 上皮成長因子受容体 & 癌
  • 血小板由来成長因子受容体 (PDGFR)
  • インスリン様成長因子1受容体 (IGF-1R)

第5章 受容体型チロシンキナーゼのシグナリング経路

  • PI3K/Akt 経路
  • Ras/Raf/ERK1/2 経路
  • The JAK/STAT 経路

第6章 癌治療向けチロシンキナーゼ阻害薬のメリット

第7章 BCR-ABL チロシンキナーゼ阻害薬

  • イマチニブ
  • ニロチニブ
  • ダサチニブ
  • ポナチニブ
  • ボスチニブ

第8章 上皮成長因子受容体チロシンキナーゼ阻害薬

  • ゲフィチニブ
  • エルロチニブ
  • ラパチニブ
  • イコチニブ
  • カネルチニブ
  • アファチニブ
  • ネラチニブ
  • ポジオチニブ

第9章 血管内皮増殖因子 (VEGF) チロシンキナーゼ阻害薬

  • スニチニブ
  • ソラフェニブ
  • バンデタニブ
  • パゾパニブ
  • アキシチニブ
  • セジラニブ

第10章 癌治療におけるチロシンキナーゼ阻害薬のアプリケーション

  • 進行性非小細胞肺癌の第一選択治療におけるチロシンキナーゼ阻害薬の役割
  • 慢性骨髄性白血病の緩和
  • 大腸癌との闘いにおけるチロシンキナーゼ阻害薬の役割
  • 消化管癌 & チロシンキナーゼ阻害薬
  • 乳癌におけるチロシンキナーゼ阻害薬

第11章 世界のチロシンキナーゼ阻害薬市場概要

  • 現在の市況
  • 癌チロシンキナーゼ阻害薬のパイプライン概要

第12章 世界のチロシンキナーゼ阻害薬市場ダイナミクス

  • 好ましい促進因子
    • R&D
    • 強力な臨床パイプライン
    • 疾病発生率の増加、ほか
  • チロシンキナーゼ阻害薬市場を抑制する課題
    • 候補薬の承認に対する厳しい規制ガイドライン
    • R&Dのフェーズの長さ
    • 臨床試験の資金
    • 競争の激しい市場

第13章 世界のチロシンキナーゼ阻害薬市場の将来展望

第14章 世界の癌チロシンキナーゼ阻害薬の臨床パイプライン:企業・症状・相別

  • 未報告
  • 研究段階
  • 前臨床段階
  • 臨床段階
  • 第I相
  • 第I相/第II相
  • 第II相
  • 第II相/第III相
  • 第III相
  • 事前登録
  • 登録済み

第15章 上市済み癌チロシンキナーゼ阻害薬の臨床考察:ブランド名・企業・症状別

第16章 開発が中止/中断した癌チロシンキナーゼ阻害薬の臨床パイプライン:企業・相別

  • 開発報告なし
  • 中止
  • 中断

第17章 競合情勢

  • AB Science
  • Advenchen Laboratories
  • Array BioPharma
  • ARIAD Pharmaceuticals
  • Astellas Pharma (OSI Pharmaceuticals)
  • AstraZeneca
  • Bayer HealthCare
  • Biocad
  • Biocon
  • Boehringer Ingelheim
  • Bristol-Myers Squibb
  • Celera Genomics Group
  • Celgene Corporation (Avila Therapeutics)
  • Celltrion
  • Chugai Pharmaceutical
  • Cytopia Research
  • 第一三共 (Ambit Biosciences Corporation)
  • Dyax
  • エーザイ
  • Exelixis
  • GlaxoSmithKline
  • Hanmi Pharmaceutical
  • Novartis
  • Onyx Pharmaceuticals
  • Pfizer
  • Plexxikon
  • Reliance Life Sciences
  • Roche
  • Shire
  • Synthon
  • Wyeth
  • Xcovery
  • Zydus Cadila

図表

目次

The global increase in the prevalence of cancer and the increasing recognition of the therapeutic and commercial opportunities offered by new oncology treatments have provided a major incentives for the pharmaceutical industry to pursue the development of new agents for the treatment of cancer. To tackle the ever rising global cancer burden, the cancer treatment is inclining towards the targeted drug therapy due to the numerous drawbacks associated with conventional chemotherapy. Targeted drug therapy includes targeting various signaling pathways associated to the tyrosine kinase receptors. Ample of studies have been performed which confirm their intrinsic involvement of tyrosine related pathways in development of the tumors.

Until the late 1980s, it was thought of as impossible to target protein kinases by the tractable drugs, the reason lied in the presumed need to compete with adenosine triphosphate (ATP) as well as concerns regarding selectivity of the potential drugs. Since then, considerable progress has been made, and the past few years have seen a number of kinase inhibitors which have entered the market. Till now, 518 protein kinases have been encoded from the human genome; we call it as Human Kinome. From the encoded human genome, 90 kinases belong to the group of tyrosine kinases. The tyrosine kinase group consists of approximately 30 families, for example the VEGFR family and the fibroblast growth factor receptor (FGFR) family. Six other groups have been identified whose kinases primarily phosphorylate serine and threonine residues.

Tyrosine kinases play the most critical part in the modulation of growth factor signaling. Activated forms of these enzymes can cause increases in tumor cell proliferation and growth, induce antiapoptotic effects, and promote angiogenesis and metastasis. In addition to activation by growth factors, protein kinase activation by somatic mutation is a common mechanism of tumor genesis. Because all of these effects are initiated by receptor tyrosine kinase activation, they are key targets for inhibitors.

The TKI drug discovery has evolved dramatically in recent years. Along with the launch of new drugs, efficient approaches for the development of potent and selective inhibitors with desirable properties have become established. At present kinase inhibitors are being designed from crystallography to deal with different binding modes and unexpected inhibitor induced conformational rearrangements. Much of kinase inhibitors which are supposed to enter in market in near future are rationally designed through high throughput screening and empirical optimization on the basis of structure-activity relationships. Sophisticated proteomic approaches have been developed in conjunction with panels of enzyme assays to allow for a more thorough annotation of kinase inhibitor selectivity.

Now with the considerable amount of research and advancement in technology, kinase signaling pathway is seen as the largest class of potential drug targets by the pharmaceutical industry. Over the last decades, billions have been spent and huge efforts have been taken in basic and clinical cancer research. About a decade ago, the race between drugs and cancer cells reached a new level by introduction of tyrosine kinase inhibitors into pharmacological anti-cancer therapy.

Clinical pipeline of cancer tyrosine kinase inhibitor therapeutics is quite strong due to which competitive product is expected to enter continuously in global market. Owing to increasing cancer incidences, it has become imperative to take necessary steps to introduce innovative tyrosine kinase inhibitor therapeutics in global market. Technological advancements may allow the investigators to develop products having high safety and efficacy levels along with minimized side effects but it will take some time. Various products are at different stages of clinical trials which will be introduced in global market in coming years. Higher cost effectiveness is expected due to which sales is expected to increase and profit margins will increase. With all these development, the future of tyrosine kinase therapeutics looks optimistic.

"Global Cancer Tyrosine Kinase Inhibitors Market & Clinical Pipeline Outlook 2020" Report Highlights:

  • Introduction to Cancer Tyrosine Kinase Inhibitors
  • Signaling Pathway of Receptor Tyrosine Kinase
  • Advantage of Tyrosine Kinase Inhibitors for Treatment of Cancer
  • Applications of Tyrosine Kinase Inhibitor in Cancer Therapy
  • Global Tyrosine Kinase Inhibitors Market Overview
  • Global Cancer Tyrosine Kinase Inhibitors Clinical Pipeline by Company, Indication & Phase
  • Global Cancer Tyrosine Kinase Inhibitors Clinical Pipeline: 411 Drugs
  • Majority of Cancer Tyrosine Kinase Inhibitors in Preclinical Phase: 164 Drugs
  • Marketed Cancer Tyrosine Kinase Inhibitors: 32 Drugs

Table of Contents

1. The Journey: Genesis to Present of Tyrosine Kinase Inhibitors

2. Tyrosine Kinase: An Overview

3. Tyrosine Kinases Inhibitors: Promising Tools for Targeted Cancer Therapies

4. Types of Tyrosine Kinase Receptors

  • 4.1 Epidermal Growth Factor Receptor
    • 4.1.1 Types of Epidermal Growth Factor Receptor
    • 4.1.2 Epidermal Growth Factor Receptor & Ligands
    • 4.1.3 Epidermal Growth Factor Receptor & Cancers
  • 4.2 Platelet-Derived Growth Factor Receptor (PDGFR)
    • 4.2.1 Types of Platelet-Derived Growth Factor Receptor
    • 4.2.2 Platelet-Derived Growth Factor Receptor & Ligands
    • 4.2.3 Platelet-Derived Growth Factor Receptor & Cancer
  • 4.3 Insulin-Like Growth Factor 1 Receptor (IGF-1R)
    • 4.3.1 Insulin-Like Growth Factor 1 Receptor & its Ligands
    • 4.3.2 Insulin-Like Growth Factor 1 Receptor & its role in Cancer

5. Signaling Pathway of Receptor Tyrosine Kinase

  • 5.1 PI3K/Akt Pathway
  • 5.2 Ras/Raf/ERK1/2 Pathway
  • 5.3 The JAK/STAT Pathway

6. Advantage of Tyrosine Kinase Inhibitors for Treatment of Cancer

7. BCR-ABL Tyrosine Kinase Inhibitors

  • 7.1 Imatinib
  • 7.2 Nilotinib
  • 7.3 Dasatinib
  • 7.4 Ponatinib
  • 7.5 Bosutinib

8. Epidermal Growth Factor Receptor Kinase Inhibitors Tyrosine

  • 8.1 Gefitinib
  • 8.2 Erlotinib
  • 8.3 Lapatinib
  • 8.4 Icotinib
  • 8.5 Canertinib
  • 8.6 Afatinib
  • 8.7 Neratinib
  • 8.8 Poziotinib

9. Vascular Endothelial Growth Factor Tyrosine Kinase Inhibitors

  • 9.1 Sunitinib
  • 9.2 Sorafenib
  • 9.3 Vandetanib
  • 9.4 Pazopanib
  • 9.5 Axitinib
  • 9.6 Cediranib

10. Applications of Tyrosine Kinase Inhibitor in Cancer Therapy

  • 10.1 Role of Tyrosine Kinase Inhibitors in the First-Line Treatment of Advanced Non-Small Cell Lung Cancer
  • 10.2 Mitigation of Chronic Myeloid Leukaemia
  • 10.3 Role of tyrosine Kinase Inhibitors in Combating Colorectal Cancer
  • 10.4 Gastrointestinal Cancer & Tyrosine Kinase Inhibitor
  • 10.5 Tyrosine Kinase Inhibitor in Breast Cancer

11. Global Tyrosine Kinase Inhibitors Market Overview

  • 11.1 Current Market Scenario
  • 11.2 Cancer Tyrosine Kinase Inhibitors Pipeline Overview

12. Global Tyrosine Kinase Inhibitor Market Dynamics

  • 12.1 Favorable Driving Factors
    • 12.1.1 Research & Development
    • 12.1.2 Strong Clinical Pipeline
    • 12.1.3 Increasing Disease Incidences
    • 12.1.4 Unmet Requirement of Completely Curative Agents
    • 12.1.5 Advancement in Manufacturing Capabilities of the Biopharmaceutical Companies
  • 12.2 Challenges Countered by Tyrosine Kinase Inhibitor Market
    • 12.2.1 Strict Regulatory Guidelines for Approval of Prospective Drug
    • 12.2.2 Long Phase of Research & Development
    • 12.2.3 Funding of Clinical Trials
    • 12.2.4 Highly Competitive Market

13. Global Tyrosine Kinase Inhibitor Market Future Prospects

14. Global Cancer Tyrosine Kinase Inhibitors Clinical Pipeline by Company, Indication & Phase

  • 14.1 Unknown
  • 14.2 Research
  • 14.3 Preclinical
  • 14.4 Clinical
  • 14.5 Phase-I
  • 14.6 Phase-I/II
  • 14.7 Phase-II
  • 14.8 Phase-II/III
  • 14.9 Phase-III
  • 14.10 Preregistration
  • 14.11 Registered

15. Marketed Cancer Tyrosine Kinase Inhibitors Clinical Insight by Brand Name, Company & Indication

  • 15.1 Blood Cancer
    • 15.1.1 Ibrutinib (Imbruvica)
    • 15.1.2 Ponatinib (Iclusig)
    • 15.1.3 Dasatinib (Tasigna)
    • 15.1.4 Nilotinib (Tasigna)
    • 15.1.5 Bosutinib (Bosulif)
    • 15.1.6 Radotinib (Supect)
  • 15.2 Breast Cancer
    • 15.2.1 Trastuzumab Subcutaneous (Herceptin SC)
    • 15.2.2 Pertuzumab (Omnitarg & Perjeta)
    • 15.2.3 Lapatinib (Tykerb & Tyverb)
    • 15.2.4 Trastuzumab Biosimilar (CANMAb & Hertraz)
    • 15.2.5 Trastuzumab Biosimilar (Vivitra)
  • 15.3 Gastric Cancer
    • 15.3.1 Apatinib
  • 15.4 Non-small cell lung cancer
    • 15.4.1 Afatinib (Gilotrif, Giotrif & Tomtovok)
    • 15.4.2 Nintedanib (Ofev & Vargatef)
    • 15.4.3 Ceritinib (Zykadia)
    • 15.4.4 Crizotinib (Xalkori)
    • 15.4.5 Icotinib (Conmana)
    • 15.4.6 Gefitinib (Iressa)
    • 15.4.7 Alectinib (Alecensa)
  • 15.5 Renal Cancer
    • 15.5.1 Axitinib (Inlyta)
  • 15.6 Thyroid Cancer
    • 15.6.1 Vandetanib (Caprelsa, Zactima & Zictifa)
  • 15.7 Multiple
    • 15.7.1 Sunitinib (Sutent)
    • 15.7.2 Lenvatinib (Lenvima)
    • 15.7.3 Regorafenib (Stivarga)
    • 15.7.4 Imatinib (Gleevec, Glivec & Ruvise)
    • 15.7.5 Trastuzumab (Herceptin)
    • 15.7.6 Erlotinib (Tarceva)
    • 15.7.7 Ramucirumab (Cyramza)
    • 15.7.8 Cabozantinib (COMETRIQ, Cabometyx & Cometriq)
    • 15.7.9 Nimotuzumab (BIOMAb EGFR, CIMAher, Cimaher, Taixinsheng, TheraCIM, Theraloc & VECTHIX)
    • 15.7.10 Sorafenib (Nexavar)
    • 15.7.11 Imatinib (Imatib)

16. Discontinued & Suspended Cancer Tyrosine Kinase Inhibitors Clinical Pipeline by Company & Phase

  • 16.1 No Development Reported
  • 16.2 Discontinued
  • 16.3 Suspended

17. Competitive Landscape

  • 17.1 AB Science
  • 17.2 Advenchen Laboratories
  • 17.3 Array BioPharma
  • 17.4 ARIAD Pharmaceuticals
  • 17.5 Astellas Pharma (OSI Pharmaceuticals)
  • 17.6 AstraZeneca
  • 17.7 Bayer HealthCare
  • 17.8 Biocad
  • 17.9 Biocon
  • 17.10 Boehringer Ingelheim
  • 17.11 Bristol-Myers Squibb
  • 17.12 Celera Genomics Group
  • 17.13 Celgene Corporation (Avila Therapeutics)
  • 17.14 Celltrion
  • 17.15 Chugai Pharmaceutical
  • 17.16 Cytopia Research
  • 17.17 Daiichi Sankyo (Ambit Biosciences Corporation)
  • 17.18 Dyax
  • 17.19 Eisai Co Ltd
  • 17.20 Exelixis
  • 17.21 GlaxoSmithKline
  • 17.22 Hanmi Pharmaceutical
  • 17.23 Novartis
  • 17.24 Onyx Pharmaceuticals
  • 17.25 Pfizer
  • 17.26 Plexxikon
  • 17.27 Reliance Life Sciences
  • 17.28 Roche
  • 17.29 Shire
  • 17.30 Synthon
  • 17.31 Wyeth
  • 17.32 Xcovery
  • 17.33 Zydus Cadila

List of Figures

  • Figure 3-1: Pictorial View of Signaling Pathways Involved on Activation of Tyrosine Kinase Receptor
  • Figure 4-1: Different Types of Tyrosine Kinase Receptors
  • Figure 5-1: Various Possible Signaling Pathways Taken by Receptor Tyrosine Kinase
  • Figure 5-2: Steps Involved in PI3K/Akt Pathway
  • Figure 5-3: Signaling Pathway Followed by Ras/Raf/ERK1/2 Pathway
  • Figure 5-4: Signaling Pathway of JAK STAT Tyrosine Kinase Receptors
  • Figure 10-1: Applications of Tyrosine Kinase Inhibitors in Cancer Therapy
  • Figure 11-1: Global Cancer Kinase Inhibitors Market Opportunity (US$ Billion), 2015-2020
  • Figure 11-2: Global Cancer Tyrosine Kinase Inhibitors Clinical Pipeline by Phase (%), 2016
  • Figure 11-3: Global Cancer Tyrosine Kinase Inhibitors Clinical Pipeline by Phase (Numbers), 2016
  • Figure 11-4: Global Cancer Tyrosine Kinase Inhibitors Clinical Pipeline by Phase (%), 2016
  • Figure 11-5: Global Cancer Tyrosine Kinase Inhibitors Clinical Pipeline by Phase (Numbers), 2016
  • Figure 12-1: Various Driving Factors Involved in Establishment of Tyrosine Kinase Inhibitor Market
  • Figure 12-2: List of the Drugs In Different Phases of Clinical Trials
  • Figure 12-3: List of Main Challenges Which Hamper Development of Tyrosine Kinase Inhibitors
  • Figure 17-1: AB Scicence - Clinical Pipeline
  • Figure 17-2: Advenchen Laboratories - Clinical Pipeline
  • Figure 17-3: ARIAD - Clinical Pipeline
  • Figure 17-4: Biocon - linical Pipeline
  • Figure 17-5: Celgene Corporation - Clinical Pipeline
  • Figure 17-6: Daiichi Sankyo - Clinical Pipeline
  • Figure 17-7: Novartis - Clinical Pipeline
  • Figure 17-8: Plexxikon - Clinical Pipeline
  • Figure 17-9: Roche - Clinical Pipeline
  • Figure 17-10: Zydus Cadila - Clinical Pipeline

List of Tables

  • Table 3-1: Recently Approved Tyrosine Kinase Inhibitors
  • Table 4-1: ErbB Family Members & Their Ligands
  • Table 4-2: Platelet-Derived Growth Factor Receptor & Ligands
  • Table 4-3: Receptor Platelet Derived Tyrosine Kinase & the Cancers Associated
  • Table 4-4: Insulin Receptor Family Members & Its Ligands
  • Table 7-1: List of Tyrosine Kinase Inhibitors Developed against BCR-ABL Receptors
  • Table 8-1: List of the Drugs Targeting EFGR Receptor
  • Table 9-1: Different Drugs associated with The Treatment of Angiogenesis Related Cancers
  • Table 10-1: Tyrosine Kinase Inhibitors Targeting Lung Cancer
  • Table 10-2: Drugs being Developed to Treat Hematological Malignancies
  • Table 10-3: Drugs Used to Manage Breast Cancer
  • Table 10-4: Some of the Tyrosine Kinase Inhibitors Developed to Treat Metastatic Melanoma
  • Table 11-1: Drugs to Enter the Market in Near Future
Back to Top