表紙
市場調査レポート

癌治療のためのナノメディシン:市場およびパイプラインの分析 (2015年)

Cancer Nanomedicine Market & Pipeline Insight 2015

発行 KuicK Research 商品コード 324912
出版日 ページ情報 英文 220 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=102.95円で換算しております。

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。制限内容はお問合せください。
Multi-User License: 会社全体での使用権

Back to Top
癌治療のためのナノメディシン:市場およびパイプラインの分析 (2015年) Cancer Nanomedicine Market & Pipeline Insight 2015
出版日: 2015年02月25日 ページ情報: 英文 220 Pages
概要

癌治療のためのナノ粒子薬物送達システムの開発は、今後明るい展望が開ける見通しです。目的とする腫瘍部位への薬剤送達において比較的安全で有効性の高いナノ粒子材料を特定することが現在求められている課題であり、天然高分子タンパク質がナノ担体システムを構築する確実な材料として考えられています。アルブミンナノ粒子の商業的成長を受け、他のタンパク質に対しても高い関心が寄せられています。

当レポートでは、癌治療のためのナノメディシンの市場およびパイプラインの動向について調査し、ナノメディシンの概要、癌治療におけるニーズと重要性、ナノメディシンによる癌治療のメカニズム、技術的発展の経緯、パイプラインのフェーズ別の動向、上市済みナノメディシンの概要、将来の展望、主要企業のプロファイルなどをまとめています。

第1章 イントロダクション:ナノメディシン

第2章 癌治療のためのナノメディシン

第3章 癌治療におけるナノメディシンの必要性

第4章 癌治療のためのナノ粒子薬物送達システムの分類

第5章 ナノメディシンによる癌治療のメカニズム

第6章 癌治療のためのナノメディシン:世界市場の展望

  • 現在の市場シナリオ
  • 癌治療のためのナノメディシン:臨床パイプラインの概要

第7章 癌治療のためのナノメディシン:世界市場の力学

  • 市場に好意的なパラメーター
  • 上市における課題

第8章 癌治療のためのナノメディシン:世界市場の将来の展望

第9章 臨床パイプライン:企業・適応症・フェーズ別

  • 研究
  • 前臨床
  • 第I相
  • 第I/II相
  • 第II相
  • 第II/III相
  • 第III相

第10章 上市済みナノメディシン:企業・適応症別

第11章 開発延期・中止のパイプライン

  • 開発報告なし
  • 中止

第12章 競合環境

  • Abraxis BioScience
  • Access Pharmaceuticals
  • Alnylam Pharmaceuticals
  • Arrowhead Research
  • BIND Biosciences
  • Epeius Biotechnologies
  • Nanobiotix
  • NanoCarrier
  • 日本化薬
  • Samyang
  • 武田薬品工業

図表一覧

目次

During the last decade, there has been significant impact of the emergence of nanotechnology on clinical therapeutics. The pharmaceutical industry has witnessed advances in biocompatible nanoscale drug carriers in the form of liposomes and polymeric nanparticles which have the potential to deliver numerous drugs with more efficiency and safety. The advantages of nanoparticle drug delivery, specifically, at the systemic level, include longer circulation half-lives, improved pharmacokinetics and reduced side effects which are major reasons for its increasing popularity. In the field of cancer therapy, the nanoparticles could possibly depend heavily on the enhanced permeability and retention effect which is caused by leaky tumor vasculatures for better drug accumulation at the tumor sites. Owing to such benefits, the therapeutic nanoparticles as a form of drug delivery has become a very promising field and has the potential to successfully replace traditional chemotherapy.

Scientists and engineers have been specifically researching on discovering different approaches to deliver multiple therapeutic agents using a single drug nanocarrier. Given the fact that application of multiple drugs could possibly suppress the notorious phenomenon of cancer chemo-resistance, these efforts have been motivated to a great extent. It has been observed that the cancer cells tend to exhibit a diminishing response over the course of a chemo-treatment because they acquire defense mechanisms by over expressing drug efflux pumps, increasing drug metabolism, enhancing self-repairing ability or expressing altered drug targets. In order to reduce the cancer drug resistance for better therapeutic effectiveness, the “combination chemotherapy” has been adopted for a long time in the clinics as a primary cancer treatment regimen.

While on the one hand, applying multiple drugs with different molecular targets could possibly raise the genetic barriers needed to be overcome for cancer cell mutations, thereby delaying the cancer adaptation process. On the other hand, it has been proved that multiple drugs targeting the same cellular pathways could sometimes function synergistically for higher therapeutic efficacy and higher target selectivity. However, there are many shortcomings in the current combination chemotherapies. These include varying pharmacokinetics, biodistrubtions and membrane transport properties among different drug molecules which tend to make dosing and scheduling optimization extremely difficult. These challenges have made the researchers and clinicians to investigate more efficient approaches to incorporating nanotechnology with combination chemotherapy.

The future years are expected to be bright with regards to the development of nanoparticle drug delivery systems for cancer treatment. The identification of nanoparticle materials which are relatively safe and effective in delivering therapeutic agents to the target tumor sites is the need of the hour. The protein polymers from natural sources are considered to be promising materials for constructing the nanocarrier systems. With the commercial success of albumin-based nanoparticles, there has been significant amount of interest in other proteins also. By rationally designing protein nanoparticles based on their behaviors in the tumor microenvironment and based on cancer cell biology, improved efficacy and safety of cancer therapy can be achieved.

“Cancer Nanomedicine Market & Pipeline Insight 2015” Report Highlight:

  • Nanomedicine for Cancer Therapies
  • Cancer Nanoparticles Drug Delivery Systems Classification
  • Mechanism of Cancer Nanomedicine Therapy
  • Cancer Nanomedicine Clinical Pipeline Overview
  • Cancer Nanomedicine Clinical Pipeline by Company, Indication & Phase
  • Cancer Nanomedicine Clinical Pipeline: 79 Drugs
  • Marketed Cancer Nanomedicine: 8 Drugs

Table of Contents

1. Introduction to Nanomedicine

2. Nanomedicine for Cancer Therapies

3. Need for Nanomedicine in Cancer Therapy

4. Cancer Nanoparticles Drug Delivery Systems Classification

5. Mechanism of Cancer Nanomedicine Therapy

6. Global Cancer Nanomedicine Market Outlook

  • 6.1. Current Market Scenario
  • 6.2. Cancer Nanomedicine Clinical Pipeline Overview

7. Global Cancer Nanomedicine Market Dynamics

  • 7.1. Favorable Market Parameters
  • 7.2. Commercialization Challenges

8. Global Cancer Nanomedicine Market Future Prospects

9. Cancer Nanomedicine Clinical Pipeline by Company, Indication & Phase

  • 9.1. Research
  • 9.2. Preclinical
  • 9.3. Phase-I
  • 9.4. Phase-I/II
  • 9.5. Phase-II
  • 9.6. Phase-II/III
  • 9.7. Phase-III

10. Marketed Cancer Nanomedicine by Company & Indication

11. Suspended & No Development Reported in Cancer Nanomedicine Clinical Pipeline

  • 11.1. No Development Reported
  • 11.2. Discontinued

12. Competitive Landscape

  • 12.1. Abraxis BioScience
  • 12.2. Access Pharmaceuticals
  • 12.3. Alnylam Pharmaceuticals
  • 12.4. Arrowhead Research
  • 12.5. BIND Biosciences
  • 12.6. Epeius Biotechnologies
  • 12.7. Nanobiotix
  • 12.8. NanoCarrier
  • 12.9. Nippon Kayaku
  • 12.10. Samyang
  • 12.11. Takeda Pharmaceutical

List of Figures

  • Figure 1-1: Introduction to Nanomedicine
  • Figure 1-2: Applications Areas of Nanomedicine
  • Figure 2-1: Technology Evolution of Targeted Drug Delivery using Nanoparticles for Cancer Treatment
  • Figure 3-1: Need & Importance of Nano Drug Delivery for Cancer
  • Figure 4-1: Types of Nanoparticles Drug Delivery Systems
  • Figure 5-1: Mechanism of Cancer Nanomedicine Therapy
  • Figure 5-2: Multiblock Polymer Nanoparticles Attacks Tumors- Step by Step Process of Drug Delivery
  • Figure 6-1: Novel Drug Delivery Systems for Cancer
  • Figure 6-2: Cancer Nanomedicine Pipeline by Phase (%), 2015
  • Figure 6-3: Cancer Nanomedicine Pipeline by Phase (Number), 2015
  • Figure 6-4: No Development Reported in Cancer Nanomedicine Pipeline by Phase (%), 2015
  • Figure 6-5: No Development Reported in Cancer Nanomedicine Pipeline by Phase (Number), 2015
  • Figure 6-6: Discontinued Cancer Nanomedicine Pipeline by Phase (%), 2015
  • Figure 6-7: Discontinued Cancer Nanomedicine Clinical Pipeline by Phase (Number), 2015
  • Figure 12-1: Arrowhead Research Corporation Clinical Pipeline
  • Figure 12-2: NanoCarrier Clinical Pipeline

List of Tables

  • Table 4 1: Liposomes for Combination Cancer Therapy
  • Table 4 2: Polymeric nanoparticles & Polymer Drug Conjugates for Combination Cancer Therapy
  • Table 4 3: Dendrimers & other Nanoparticles for Combination Cancer Therapy
Back to Top