株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

スマートクロージング & ジュエリー:ファッションおよび技術の機会 2016-2020年

Smart Clothing & Jewellry: Fashion & Technology Opportunities 2016-2020

発行 Juniper Research 商品コード 353258
出版日 ページ情報 英文
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1GBP=146.92円で換算しております。
Back to Top
スマートクロージング & ジュエリー:ファッションおよび技術の機会 2016-2020年 Smart Clothing & Jewellry: Fashion & Technology Opportunities 2016-2020
出版日: 2016年03月01日 ページ情報: 英文
概要

当レポートでは、スマートクロージングおよびスマートジュエリー市場、およびプロ向け・消費者向けのフィットネス用衣料品・ボディセンサー装置の主な機会について調査しており、衣料品型ウェアラブルにとっての最善の利用例、市場における革新を促進する技術要素、主な障壁と対処方法、現在・将来のビジネスモデル、および主要企業などについて分析しています。

市場動向・競合状況

第1章 生活のためのウェアラブル?

  • イントロダクション
  • 調査範囲
  • ウェアラブルデバイスの定義
    • スマートクロージング & ジュエリーの定義
  • スマートクロージング & ジュエリーの機能
    • 技術
    • 利用例
  • ライフスタイルウェアラブル部門のダイナミクス
  • 主な市場成長促進因子
  • 主な市場障壁
  • 主な市場動向

第2章 スマートクロージング & ジュエリーのエコシステム

  • イントロダクション
  • 周辺機器のエコシステム
  • エコシステムのメンバー & ステークホルダー
  • スマートクロージング & ジュエリーのビジネスモデル
    • ハードウェア収益のビジネスモデル
    • 技術ソリューション提供のビジネスモデル
    • メーカー経済のビジネスモデル
    • デバイス & サービスのビジネスモデル
  • Juniper Research による破壊者 & 挑戦者の分析
    • 状況分析

第3章 スマートクロージング & ジュエリーの予測

  • イントロダクション
  • 予測手法
  • スマートクロージング & ジュエリーの数量予測
    • デバイスのインストールベース
    • デバイスの出荷台数
  • スマートクロージング & ジュエリーのハードウェア収益予測
    • 分類による予測
    • 地域による予測
目次

Overview

Juniper's Smart Clothing & Jewellery research provides incisive analysis, appraising the key opportunities for smart clothing and smart jewellery, as well as professional and consumer fitness clothing and body sensors devices.

Our annual research service includes regular quarterly updates and is a must-have purchase for both leaders and start-ups looking to establish themselves in this sector.

The research comprises two documents:

  • Market Trends & Opportunities (PDF)
  • 5 Year Market Sizing & Forecast Spreadsheet (Excel)

Key Features

  • Discussion of current technological capabilities and key use cases in this nascent segment.
  • In-depth assessment of the key disruptive factors driving adoption and development.
  • Granular industry forecasts providing size and growth data for hardware, split by segment:
    • Consumer Fitness Clothing
    • Professional Fitness Clothing
    • Professional Fitness Body Sensors
    • Other Connected Clothing
    • Smart Jewellery
  • Current and anticipated capability assessment, including an analysis of the competitive landscape for several key vendors and an outline of the technologies currently used in these devices.
  • Ecosystem analysis, discussing current and future business models for players throughout the value chain.

Key Questions

  • 1. What are the best use cases for clothing-based wearables?
  • 2. What elements of technology are driving innovation in the space?
  • 3. What are the key barriers to advancing this space, and how can they be overcome?
  • 4. What business models currently exist and what will they look like in the future?
  • 5. Who are the main players in this market, and where are they focused?

Companies Referenced

AiQ, Amazon, ANT+ Alliance, Athos, Bluetooth SIG, Cambridge Consultants, Chromat, CliMate, CUFF, eBay, FashionTEQ, FirstSign, Fitbit, Footfalls & Heartbeats, Google, Guardian Angel, Henry Holland, Hexoskin, Intel, Jewelbots, Kerv, L'Oreal, LifeBEAM, Logbar, MasterCard, Microsoft, Misfit, Netamo, Neyya, NXP, OMSignal, PCH, Pebble, Qualcomm, Ringly, Samsung, Sensoria, Siren, Sony, SunFriend, SunSprite, Swarovski, Texas Instruments, Tory Burch, Trellie, Ubimax, Violet, Vuzix, Wearable Life Science, Zebra Technologies

Data & Interactive Forecast

Juniper's Smart Clothing & Jewellery Forecast suite includes:

  • Data splits for smart clothing, smart jewellery, and body sensors, across 8 key regions and 12 countries:
    • Canada
    • China
    • Denmark
    • Germany
    • Japan
    • Norway
    • Portugal
    • South Korea
    • Spain
    • Sweden
    • UK
    • US
  • Interactive Excel Scenario Tool allowing users to manipulate Juniper's data for more than 10 different metrics.
  • Access to the full set of forecast data of 55 tables and over 7,000 data points.

Juniper Research's highly granular Interactive Excels enable clients to manipulate Juniper's forecast data and charts to test their own assumptions by using the Interactive Scenario Tool, and compare select markets and sectors side by side in customised charts and tables. Interactive Excels greatly increase clients' ability to both understand a particular market and to integrate their own views into the model.

Table of Contents

1. Wearables for Life?

  • 1.1. Introduction
  • 1.2. Research Scope
  • 1.3. Defining Wearable Devices
    • 1.3.1. Smart Clothing & Jewellery Definition
  • 1.4. Smart Clothing & Jewellery Capabilities
    • 1.4.1. Technologies
      • i. eTextiles
        • Figure 1.1: Sony ePaper Bowtie
        • Figure 1.2: Fashion TEQ's ePaper-based Zazzi Jewellery
      • ii. Case Study: Footfalls & Heartbeats
      • iii. Connectivity
        • Figure 1.3: Kerv NFC Ring
        • Figure 1.4: Arena Powerskin Carbon-FIex idOO Interaction
      • iv. Case Study: idOO
      • v. Sensors
    • 1.4.2. Use Cases
      • ii. Case Study: Jewelbots
        • Figure 1.5: Jewelbots Band Features
      • vii. Case Study: L'Oréal My UV Patch
        • Figure 1.6: L'Oréal My UV Patch
  • 1.5. Lifestyle Wearables Sector Dynamics
    • Figure 1.7: Juniper Sector Dynamics for Lifestyle Wearables
  • 1.6. Key Market Drivers
  • 1.7. Key Market Barriers
    • Figure 1.8: Ringly Smart Ring
  • 1.8 Key Market Trends

2. Smart Clothing & Jewellery Ecosystem

  • 2.1. Introduction
  • 2.2. The Peripherals Ecosystem
  • 2.3. Ecosystem Members & Stakeholders
  • 2.4. Smart Clothing & Jewellery Business Models
    • 2.4.1. Hardware Revenue Business Model
      • Figure 2.1: Hardware Revenue Business Model
    • 2.4.2. Technolo Solutions Provision Business Model
      • Figure 2.2: Technology Solutions Provision Business Model
    • 2.4.3. Maker Economy Business Model
      • Figure 2.3: Initial Maker Economy Business Model
      • Figure 2.4: Mature Maker Economy Business Model
    • 2.4.4. Devices & Service Business Model
      • Figure 2.5: Hardware-focused Devices & Service Business Model.
      • Figure 2.6: Software-focused Devices & Services Business Model
  • 2.5. Juniper Research Disruptors & Challengers Analysis
    • Figure 2.7: Juniper Disruptors & Challengers Quadrant
    • 2.5.1. Landscape Analysis
      • i. Embryonic Vendors
      • ii. Catalysts
      • iii. Disruptors

3. Smart Clothing & Jewellery Forecasts

  • 3.1. Introduction
  • 3.2. Forecast Methodology
    • 3.2.1. Forecast Steps
      • i. Analysis of the Current Market
      • ii. Smartphone Penetration
    • 3.2.2. Clothing Forecast Category Divisions
      • Figure 3.1: Smart Clothing & Jewellery Forecast Divisions
    • 3.2.3. Methodology for Shipments, Installed Base & Market Value of Smart Clothing & Jewellery
    • 3.2.4. Methodology for Installed Base & Shipments of Professional Clothing-based Sports Equipment
      • Figure 3.2: Smart Clothing & Jewellery Consumer Forecast Methodology
      • Figure 3.3: Professional Smart Clothing Forecast Methodology
  • 3.3. Smart Clothing & Jewellery Unit Forecasts
    • 3.3.1. Device Installed Base
      • i. Category Forecasts
        • Figure & Table 3.4: Smart Clothing & Jewellery Installed Base per annum (m) Split by Category, 2015-2020
      • ii. Regional Forecasts
        • Figure & Table 3.5: Smart Clothing & Jewellery Installed Base pera nnum (m) Split by 8 Key Regions, 2015-2020
    • 3.3.2. Device Shipments
      • i. Category Forecasts
        • Figure & Table 3.6: Smart Clothing & Jewellery Shipments per annum (m) Split by Category, 2015-2020
      • ii. Regional Forecasts
        • Figure & Table 3.7: Smart Clothing &Jewellery Shipments pera nnum (m) Split by 8 Key Regions, 2015-2020
  • 3.4. Smart Clothing & Jewellery Hardware Revenue Forecasts
    • i. Category Forecasts
      • Figure & Table 3.8: Smart Clothing & Jewellery Hardware Revenue per Annum ($m) Split by Category, 2015-2020
    • ii. Regional Forecasts
      • Figure & Table 3.9: Smart Clothing & Jewellery Hardware Revenue per Annum ($m) Split by 8 Key Regions, 2015-2020
Back to Top