特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
943885

5Gにおける熱管理の市場

Thermal Management for 5G

出版日: | 発行: IDTechEx Ltd. | ページ情報: 英文 365 Slides | 納期: 即日から翌営業日

価格
価格は税抜き表示となります
5Gにおける熱管理の市場
出版日: 2020年06月23日
発行: IDTechEx Ltd.
ページ情報: 英文 365 Slides
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

5Gの市場は急速に拡大しており、5Gの導入拡大により、熱管理の部門にも革新と成長の機会が示されています。

当レポートでは、5Gの展開による熱管理の市場機会を調査し、5Gネットワークの展開状況、関連設備・デバイスにおける熱管理のニーズ・動向、各種区分別の市場規模の推移・予測などをまとめています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 基地局アーキテクチャ

  • 高周波数へのシフトとアンテナの縮小
  • 5G基地局の設置予測:周波数別
  • 5G基地局のタイプ
  • 基地局アーキテクチャ:C-RAN
  • セルラー基地局の進化:概要
  • 5Gの動向:スモールセル(ピコセル・フェムトセル)
  • 5G基地局の設置予測:セルタイプ別
  • LTEアンテナのティアダウン

第4章 アンテナ設計

  • Massive MIMO:アクティブアンテナが必要
  • MIMOサイズの予測
  • ビームフォーミングへのアプローチ
  • RFFEモジュール
  • RFFEのコンポーネント密度
  • RFモジュール設計アーキテクチャ
  • 衛星・フェーズドアレイレーダーの例
  • 同じRF ICの5Gへの導入
  • IDT(Renesas)28 GHz 2x2 4チャネルSiGeビームフォーミングIC
  • NXP:低EVM SiGe 4チャネルTx / RxビームフォーミングIC
  • Anokiwave:Tx / Rx 4エレメント3GPP 5Gバンド
  • Anokiwave:256エレメントオールシリコンアレイ
  • Sivers IMA:デュアルクワッド5Gデュアル偏光ビームフォーミングIC
  • Analog:16チャネル二重偏光ビームフォーミングIC
  • SoC Microwave:シングルチャネルGaAs HEMTデバイス
  • 28 GHzオールシリコン64二重偏波アンテナ
  • 平面設計・非平面設計
  • 先進パッケージング技術
  • NECの新しいアンテナ技術
  • 5Gの使用例・予測

第5章 5G向け半導体技術

  • 5G:帯域幅の増加
  • 半導体技術の選択
  • 主な半導体の特性
  • 主要な半導体技術のベンチマーク
  • 半導体技術の選択
  • パワーアンプ技術:パワー vs 周波数マッピング
  • RFパワーアンプ:GaAs vs GaN
  • GaAs vs GaN:電力密度とフットプリント
  • GaAs vs GaN:信頼性と転位密度
  • GaNの欠点
  • 5GにおけるRF GaN市場
  • サブ6 GHzを支配するGaN
  • mmWave
  • 5G向け半導体の展望

第6章 現在および将来のダイアタッチ:金属焼結・充填エポキシ

  • エアキャビティ vs プラスチックオーバーモールドパッケージ
  • LDMOSパワーアンプのパッケージング
  • GaNパワーアンプのパッケージング
  • GaAsパワーアンプのパッケージング
  • さまざまな包装材料のCTE・熱伝導率のベンチマーク
  • LTCC・HTCCパッケージ
  • HTCC金属セラミックパッケージ
  • LTCC RF遷移パッケージ
  • RF GaN PA:新しいダイアタッチ技術の選択肢
  • 金属焼結 vs はんだ付け
  • 焼結ペーストのサプライヤー
  • ダイアタッチ材料の予測

第7章 熱インターフェイス材料

  • TIMフォーム・材料:概要
  • サーマルインターフェースマテリアル (TIM) としての先端材料
  • グラファイト
  • カーボンファイバー
  • カーボンナノチューブ(CNT)
  • グラフェン
  • セラミックの進歩
  • 窒化ホウ素ナノ構造
  • 5Gアンテナ・BBUにおけるTIM
  • 5Gの電力
  • 5G TIMの予測

第8章 アクセスポイント向け熱戦略

  • アクセスポイント
  • 温度の影響を受けるコンポーネント
  • Boyd's
  • Cradlepoint
  • Huawei 5G CPEユニット
  • ZTE 5G Wi-Fiルーター
  • アクセスポイントの開発

第9章 モバイルデバイスの熱管理

  • 新しい5G電話のオーバーヒーティング
  • 5Gスマートフォンチップセット
  • mmWaveのコスト
  • Qualcommの5Gアンテナ
  • Appleの5Gの遅延・Intelが市場から撤退
  • 5Gモバイルデバイスの熱管理アプローチ
  • モバイルデバイス用TIM

第10章 予測サマリー

  • 5G基地局の設置予測:帯域別
  • 5G基地局の設置予測:セルタイプ別
  • MIMOサイズ予測
  • アンテナエレメントの予測
  • アンテナPCB材料の予測
  • パワーアンプ・ビームフォーミングコンポーネントの予測
  • アンプ半導体予測:ダイエリア別
  • ダイアタッチ材料の予測の:基地局サイズ別
  • GaN・LDMOSのダイアタッチ質量の予測
  • 焼結市場の予測
  • 5GアンテナのTIM予測
  • 5G BBUのTIM
  • 5Gの消費電力予測
  • 電源のTIM予測
  • 5G基地局の総TIM予測
  • スマートフォンのTIM・ヒートスプレッダーの予測
目次

Title:
Thermal Management for 5G
Thermal interface materials, die attach materials, metal sintering, MIMO, active antenna array, semiconductor technologies, sub-6 GHz and mmWave 5G. OEM strategy, player analysis and granular market forecasts.

The 5G market is expanding rapidly, with the first installations already being demonstrated. The increasing deployment of 5G will generate innovation and growth opportunities in thermal management. The shift to higher frequencies, and the accompanied higher signal loss, necessitates the densification of network installations, hence, utilising many more small-sized (pico or femto) stations. This acts to multiply the potential market for 5G infrastructure.

Additionally, the growth of sub-6 GHz installations opens the door for new power amplifier semiconductor technologies such as GaN. This is accompanied with a transition away from incumbent die attach materials like AuSn towards emerging alternatives, for example, pressure-less silver sintering.

The rise of massive MIMO increases the number of RF chains per installation, beamforming capabilities and the number of antenna elements used in networks. This results in an increase in the materials required for the antenna PCB, power amplifiers, beamforming components and many more. Massive MIMO also drives data transfer rates and channels higher leading to a greater requirement on baseband processing units, power consumption and hence greater market opportunities for thermal interface materials.

With the future rise of mmWave, even more drastic changes will be seen in the 5G market and opportunities for thermal management. To increase antenna gain, the number of antenna elements also increases, but due to the smaller wavelength, the antenna itself can be smaller. This leads to a densification of components with a drastic increase in the number of power amplifiers and beamforming components that need to be integrated. Considering teardowns of current early devices, this will likely be done by distributing components behind the antenna in a dense lattice-like structure, resulting in power dissipation challenges and hence a larger market for thermal management materials.

As the component number and density increase in a hybrid beamforming arrangement, we see many more beamforming components but also the potential to reduce the use of discrete power amplifiers, integrating them into the beamforming component. This high level of integration could then also see the market shift back towards silicon-based components in the long term.

Many of the initial 5G mobile phones that were tested by the public (especially the mmWave compatible ones) would overheat whilst utilising 5G's high download speeds and would drop back to using 4G in order to cool down. This is a very temporary solution, consumers going forward will want these extreme download speeds to reliably perform for much longer timescales. There are several strategies used by manufacturers to help keep heat to a minimum in smartphones, with the incorporation of 5G we are seeing a greater increase in devices utilising technologies such as vapour chambers and even graphene heat spreaders. Much like in previous generations of phones, how thermal interface materials are used and in what quantity is an important factor and a very large market in itself.

In this report we have carried out an extensive analysis of the 5G infrastructure market, observing the trends and combining this with evaluations of current installations and their construction. We start with 5G deployment forecasts and segment through frequency, station size and MIMO size in order to cover each use case in-depth. For each of these considerations, we break down the number of antenna elements, power amplifiers and beamforming components required. From here the trends in semiconductor technology are assessed depending on the antenna power and gain required. How the die attach market is evolving and how this will change with semiconductor technology is considered to provide a die attach market forecast. The baseband processing and power supply requirements are also considered between different station sizes and frequencies. Finally, the total areas of the previously mentioned components are used to calculate the requirement for thermal interface materials in 5G networks. For each of the mentioned quantities, we retain the segmentation of previous forecasts, this allows for an extremely granular technological and market overview. Teardowns of previous and new 5G smartphones are used to give realistic estimates of thermal interface material usage and forecast through to 2030.

What this report provides:

Technology assessments:

  • 5G installation sizes (macro, micro, pico & femto)
  • 5G deployment frequencies (sub-6 GHz & mmWave)
  • MIMO and massive MIMO installations
  • How the number of antenna elements and board size increases
  • Analog vs hybrid vs digital beamforming architectures
  • Sub-6 GHz and mmWave installation teardowns and assessments
  • Integrated vs discrete power amplifier technologies
  • Beamforming and amplifier components in the 5G RF chain
  • Semiconductor technologies for 5G networks
  • Die attach materials for RF power amplifiers: AuSi, AuSn, pressured and pressure-less metal sintering
  • Power demands for 5G networks including the antenna and baseband processing units
  • Thermal interface materials and applications: tapes, adhesives, greases, gels, pads, phase change materials, graphite, solders, boron nitride, graphene, CNTs and more
  • Thermal interface materials for antenna, baseband processing and power supplies
  • Thermal management approaches in smartphones
  • Thermal interface materials for smartphones with teardown analysis

Market assessments:

  • Key 5G players and patent landscape
  • The RF GaN industry and its suppliers
  • Suppliers of active antenna units
  • Sintering materials, their suppliers and assembly companies
  • Thermal interface materials, applications, types and suppliers

Forecast lines (2020-2030):

  • 5G installations by sub-6 GHz or mmWave frequency
  • 5G installations by station size (macro, micro, pico & femto)
  • 5G installations by MIMO size (2X2, 4X4, etc.)
  • The number of antenna elements by MIMO size
  • Area and mass of PCB materials required for antenna by MIMO size
  • The number of power amplifier and beamforming components by MIMO size
  • GaN die area for amplifier components
  • Amplifier semiconductor area by semiconductor choice
  • Die attach area and mass by station size
  • Die attach mass for GaN and LDMOS amplifiers by attach technology
  • Total market value for sintering materials in 5G by sintering technology
  • Thermal interface material area by station size and station frequency
  • Thermal interface material area for baseband processing units by station size
  • Power consumption for 5G by station size and by baseband processing vs antenna
  • Thermal interface material area for power supplies by station size
  • Total thermal interface material area for 5G stations by size and by baseband processing vs antenna vs power supply
  • Thermal interface materials for smartphones

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. 5G, next generation cellular communications network
  • 1.2. Evolution of the cellular base station: overview
  • 1.3. 5G station installation forecast (2020-2030) by frequency
  • 1.4. 5G station instalment number forecast (2020-2030) by type of cell (macro, micro, pico/femto)
  • 1.5. MIMO size forecast (2020-2030)
  • 1.6. Antenna elements forecast
  • 1.7. Antenna PCB material forecast
  • 1.8. GaN to win in sub-6 GHz 5G
  • 1.9. Semiconductor choice forecast
  • 1.10. Semiconductor forecast (2020-2030) for power amplifiers (GaN, LDMOS, SiGe/Si) by die area
  • 1.11. Why metal sintering?
  • 1.12. Die attach forecasts
  • 1.13. Power forecast for 5G
  • 1.14. Total TIM forecast for 5G stations
  • 1.15. Smartphone thermal interface material (TIM) estimate summary
  • 1.16. Thermal interface material and heat spreader forecast in smartphones by area

2. INTRODUCTION

  • 2.1. 5G, next generation cellular communications network
  • 2.2. Evolution of mobile communications
  • 2.3. What can 5G offer? High speed, massive connection and low latency
  • 2.4. Differences between 4G and 5G
  • 2.5. 5G is suitable for vertical applications
  • 2.6. 5G for consumers overview
  • 2.7. Two types of 5G: sub-6 GHz and high frequency
  • 2.8. Sub-6 GHz will be the first option for most operators
  • 2.9. Why does 5G have lower latency radio transmissions?
  • 2.10. The main technique innovations
  • 2.11. 5G is live globally
  • 2.12. 5G Capex 2020-2025
  • 2.13. 5G user equipment landscape
  • 2.14. 5G smartphone overview
  • 2.15. 5G investments at three stages
  • 2.16. Case study: expected 5G investment for infrastructure in China
  • 2.17. Key players in 5G technologies
  • 2.18. 5G patents by countries
  • 2.19. 5G patents by companies
  • 2.20. Global trends and new opportunities in 5G
  • 2.21. Thermal Management for 5G

3. BASE STATION ARCHITECTURE

  • 3.1. Shift to higher frequencies shrinks the antenna
  • 3.2. 5G station installation forecast (2020-2030) by frequency
  • 3.3. 5G base station types
  • 3.4. Base station architecture: C-RAN
  • 3.5. Evolution of the cellular base station: overview
  • 3.6. 5G trend: small cells (picocell and femtocell)
  • 3.7. 5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto)
  • 3.8. LTE antenna tear down

4. ANTENNA DESIGN

  • 4.1.1. Massive MIMO requires active antennas
  • 4.1.2. MIMO size forecast (2020-2030)
  • 4.1.3. Approach to beam forming (hybrid vs analogue vs digital)
  • 4.1.4. Approach to beam forming
  • 4.1.5. Radio Frequency Front End (RFFE) Module
  • 4.1.6. Density of components in RFFE
  • 4.1.7. RF module design architecture
  • 4.1.8. Some examples from satellite and phased-array radar
  • 4.1.9. The same RF IC is being adopted for 5G
  • 4.1.10. IDT (Renesas) 28 GHz 2x2 4-channel SiGe beamforming IC
  • 4.1.11. NXP: 4-channel Tx/Rx beamforming IC in SiGe with low EVM
  • 4.1.12. Anokiwave: Tx/Rx 4-element 3GPP 5G band all in silicon
  • 4.1.13. Anokiwave: 256-element all-silicon array
  • 4.1.14. Sivers IMA: dual-quad 5G dual-polarized beam forming IC
  • 4.1.15. Analog: a 16-channel dual polarized beam-forming IC?
  • 4.1.16. SoC Microwave: single-channel GaAs HEMT devices
  • 4.1.17. 28 GHz all-silicon 64 dual polarized antenna
  • 4.1.18. Planar vs non-planar design
  • 4.1.19. Non-planar design
  • 4.1.20. Planar design
  • 4.1.21. Advanced packaging techniques
  • 4.1.22. NEC's new antenna technology
  • 4.2. 5G Use Cases and Forecast
    • 4.2.1. Sub-6 GHz antenna teardown
    • 4.2.2. mmWave antenna teardown
    • 4.2.3. Sub-6 GHz and mmWave in one unit
    • 4.2.4. Main suppliers of 5G active antennas unit (AAU)
    • 4.2.5. Case study: NEC 5G Radio Unit
    • 4.2.6. Case study: Nokia AirScale mMIMO Adaptive Antenna
    • 4.2.7. Case study: Samsung 5G Access solution for SK telecom
    • 4.2.8. Antenna elements forecast
    • 4.2.9. Antenna PCB material forecast
    • 4.2.10. Power amplifier and beamforming component forecast
    • 4.2.11. Thermal considerations for cell towers and base stations
    • 4.2.12. Thermal considerations for small cells
    • 4.2.13. Nokia's base station liquid cooling
    • 4.2.14. ZTE's award winning base station design
    • 4.2.15. Antenna array design is just one consideration

5. THE CHOICE OF SEMICONDUCTOR TECHNOLOGY FOR 5G

  • 5.1.1. Motivation of 5G: increasing the bandwidth
  • 5.1.2. The choice of the semiconductor technology
  • 5.1.3. Key semiconductor properties
  • 5.1.4. Key semiconductor technology benchmarking
  • 5.1.5. The choice of the semiconductor technology
  • 5.1.6. Power vs frequency map of power amplifier technologies
  • 5.1.7. GaAs vs GaN for RF power amplifiers
  • 5.1.8. GaAs vs GaN: power density and footprint
  • 5.1.9. GaAs vs GaN: reliability and dislocation density
  • 5.1.10. So what is the main drawback of GaN?
  • 5.1.11. Why GaN and GaAs both have their place?
  • 5.2. The GaN Market for RF in 5G
    • 5.2.1. GaN-on-Si, SiC or Diamond for RF
    • 5.2.2. GaN suppliers
    • 5.2.3. Ampleon
    • 5.2.4. Analog Devices
    • 5.2.5. Cree-Wolfspeed
    • 5.2.6. Wolfspeed GaN-on-SiC adoption
    • 5.2.7. Infineon
    • 5.2.8. MACOM
    • 5.2.9. Mitsubishi Electric
    • 5.2.10. Northrop Grumman
    • 5.2.11. NXP Semiconductor
    • 5.2.12. Qorvo
    • 5.2.13. Qorvo sub-6 GHz products
    • 5.2.14. Qorvo mmWave products
    • 5.2.15. Qorvo and Gapwaves mmWave antenna
    • 5.2.16. Qorvo 39 GHz antenna
    • 5.2.17. RFHIC
    • 5.2.18. Sumitomo Electric
    • 5.2.19. Summary of RF GaN Suppliers
    • 5.2.20. Summary of RF GaN market for 5G
  • 5.3. GaN to dominate Sub-6 GHz?
    • 5.3.1. LDMOS dominates but will struggle to reach even sub-6 GHz 5G
    • 5.3.2. GaN to win in sub-6 GHz 5G
  • 5.4. A Different Story for mmWave
    • 5.4.1. The situation at mmWave 5G is drastically different
    • 5.4.2. Solving the power challenge: high antenna gain increases distance
    • 5.4.3. Shift to higher frequencies shrinks the antenna
    • 5.4.4. Major technological change: from broadcast to directional communication
    • 5.4.5. Examples of MMIC RFFEs for 5G: Qorvo GaN FEM
    • 5.4.6. Examples of silicon based beam forming ICs for mmWave 5G
    • 5.4.7. Examples of SiGe based beam forming ICs for mmWave 5G
  • 5.5. Semiconductor Outlook for 5G
    • 5.5.1. Semiconductor choice forecast
    • 5.5.2. Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area

6. CURRENT AND FUTURE DIE ATTACHMENT: THE ROLE OF METAL SINTERING OR FILLED EPOXY

  • 6.1.1. Air cavity vs plastic overmold packages
  • 6.1.2. Packaging LDMOS power amplifiers
  • 6.1.3. Packaging GaN power amplifiers
  • 6.1.4. Packaging GaAs power amplifiers
  • 6.1.5. Benchmarking CTE and thermal conductivity of various packaging materials
  • 6.1.6. LTCC and HTCC packages
  • 6.1.7. HTCC metal-ceramic package
  • 6.1.8. LTCC RF transitions in packages
  • 6.1.9. Built-in Cu slugs in GaN packages
  • 6.1.10. Current die attach technology choice for RF GaN PAs
  • 6.1.11. Emerging die attach technology choice for RF GaN PAs
  • 6.1.12. Metal sintering vs soldering
  • 6.1.13. Why metal sintering?
  • 6.1.14. Properties of Ag sintered or epoxy die attach materials
  • 6.2. Suppliers of Sintering Pastes
    • 6.2.1. Suppliers for metal sintering pastes
    • 6.2.2. Suppliers for metal sintering pastes: Alpha Assembly
    • 6.2.3. Suppliers for metal sintering pastes: Henkel
    • 6.2.4. Henkel: Ag sintering paste
    • 6.2.5. Heraeus: sintered Ag die attach paste
    • 6.2.6. Suppliers for metal sintering pastes: Heraeus
    • 6.2.7. Kyocera: mixed nano/micro pressure-less sintering die attach paste
    • 6.2.8. Suppliers for metal sintering pastes: Dowa
    • 6.2.9. Namics: a variety of Ag die attach paste
    • 6.2.10. Indium Corp: nano Ag pressureless sinter paste
    • 6.2.11. Suppliers for metal sintering pastes: Amo Green
    • 6.2.12. Toyo Chem: Sintered die attach paste
    • 6.2.13. Bando Chemical: pressure-less nano Ag sintering paste
    • 6.2.14. Suppliers for metal sintering pastes: Nihon Handa
    • 6.2.15. Nihon Superior: nano silver for sintering
    • 6.2.16. Heraeus and Nihon Handa cross license
    • 6.2.17. Hitachi: Cu sintering paste
    • 6.2.18. Cu sintering: characteristics
    • 6.2.19. Reliability of Cu sintered joints
    • 6.2.20. Mitsui Mining: Nano copper pressured and pressure-less sintering under N2 environment
    • 6.2.21. Pricing information on Ag Sintering, solder and TLPB
    • 6.2.22. Automating the die attach for 5G power amplifiers
    • 6.2.23. Palomar Technologies automated sintering
    • 6.2.24. ASM AMICRA Microtechnologies
    • 6.2.25. BE Semiconductor
    • 6.2.26. Legacy and incumbency for device assembly
  • 6.3. Forecast of Die Attach Materials
    • 6.3.1. Die attach material forecasts by station size
    • 6.3.2. Die attach mass for GaN and LDMOS forecast
    • 6.3.3. Sintering market value forecast

7. THERMAL INTERFACE MATERIALS

  • 7.1. TIM Form and Material Overview
    • 7.1.1. TIM considerations
    • 7.1.2. Thermal interface material by physical form
    • 7.1.3. Assessment and considerations of liquid products
    • 7.1.4. Ten types of thermal interface material
    • 7.1.5. Properties of thermal interface materials
      • 7.1.6.1. Pressure-sensitive adhesive tapes
      • 7.1.7.2. Thermal liquid adhesives
      • 7.1.8.3. Thermal greases
    • 7.1.9.Problems with thermal greases
    • 7.1.10. Thermal greases
    • 7.1.11. Viscosity of thermal greases
    • 7.1.12. Technical data on thermal greases
    • 7.1.13. The effect of filler, matrix and loading on thermal conductivity
      • 7.1.14.4. Thermal gels
      • 7.1.15.5. Thermal pastes
    • 7.1.16. Technical data on gels and pastes
      • 7.1.17.6. Elastomeric pads
    • 7.1.18. Advantages and disadvantages of elastomeric pads
      • 7.1.19.7. Phase Change Materials (PCMs)
    • 7.1.20. Phase change materials - overview
    • 7.1.21. Operating temperature range of commercially available phase change materials
  • 7.2. Advanced Materials as Thermal Interface Materials
    • 7.2.1. Advanced materials for TIM - introduction
    • 7.2.2. Achieving through-plane alignment
    • 7.2.3. Summary of TIM utilising advanced carbon materials
  • 7.3. Graphite
    • 7.3.1. Graphite - overview
    • 7.3.2. Graphite sheets: through-plane limitations
    • 7.3.3. Graphite sheets: interfacing with heat source and disrupting alignment
    • 7.3.4. Panasonic - Pyrolytic Graphite Sheet (PGS)
    • 7.3.5. Progressions in vertical graphite
    • 7.3.6. Vertical graphite with additives
    • 7.3.7. Graphite pastes
  • 7.4. Carbon Fiber
    • 7.4.1. Carbon fiber as a thermal interface material - introduction
    • 7.4.2. Carbon fiber as TIM in smartphones
    • 7.4.3. Magnetic alignment of carbon fiber TIM
    • 7.4.4. Other routes to CF alignment in a TIM
    • 7.4.5. Carbon fiber with other conductive additives
  • 7.5. Carbon Nanotubes (CNT)
    • 7.5.1. Introduction to Carbon Nanotubes (CNT)
    • 7.5.2. Challenges with VACNT as TIM
    • 7.5.3. Transferring VACNT arrays
    • 7.5.4. Notable CNT TIM examples from commercial players
  • 7.6. Graphene
    • 7.6.1. Graphene in thermal management: application roadmap
    • 7.6.2. Graphene heat spreaders: commercial success
    • 7.6.3. Graphene heat spreaders: performance
    • 7.6.4. Graphene heat spreaders: suppliers multiply
    • 7.6.5. Graphene as a thermal paste additive
    • 7.6.6. Graphene as additives to thermal interface pads
  • 7.7. Ceramic Advancements
    • 7.7.1. Ceramic trends: spherical variants
    • 7.7.2. Denka: functional fine particles for thermal management
    • 7.7.3. Denka
    • 7.7.4. Showa Denko: transition from flake to spherical type filler
  • 7.8. Boron Nitride Nanostructures
    • 7.8.1. Introduction to nano boron nitride
    • 7.8.2. BNNT players and prices
    • 7.8.3. BNNT property variation
    • 7.8.4. BN nanostructures in thermal interface materials
  • 7.9. TIM in 5G Antenna and BBU
    • 7.9.1. Board-level heat dissipation: thermal interface materials
    • 7.9.2. Indium foils as a good board-level TIM option
    • 7.9.3. A simple description to the anatomy of a base station
    • 7.9.4. Background info on baseband processing unit and remote radio head
    • 7.9.5. Path evolution from baseband unit to antenna
    • 7.9.6. TIM example: Samsung 5G access point
    • 7.9.7. TIM example: Samsung outdoor CPE unit
    • 7.9.8. TIM example: Samsung indoor CPE unit
    • 7.9.9. TIM forecast for 5G antenna
    • 7.9.10. The 6 components of a baseband processing unit
    • 7.9.11. BBU parts I: TIM area in the main control board
    • 7.9.12. BBU parts II & III: TIM area in the baseband processing board & the transmission extension board
    • 7.9.13. BBU parts IV & V: TIM area in radio interface board & satellite-card board
    • 7.9.14. BBU parts VI: TIM area in the power supply board
    • 7.9.15. Summary
    • 7.9.16. TIM for 5G BBU
  • 7.10. 5G Power
    • 7.10.1. Power consumption in 5G
    • 7.10.2. Challenges to the 5G power supply industry
    • 7.10.3. The dawn of smart power?
    • 7.10.4. Power consumption forecast for 5G
    • 7.10.5. TIM forecast for power supplies
  • 7.11. Total TIM Forecast for 5G
    • 7.11.1. Total TIM forecast for 5G stations

8. THERMAL STRATEGIES FOR ACCESS POINTS

  • 8.1. Access points
  • 8.2. Components affected by temperature
  • 8.3. Boyd's take on thermal design for an access point
  • 8.4. Cradlepoint's wideband adapter
  • 8.5. Huawei 5G CPE unit
  • 8.6. ZTE 5G Wi-Fi router
  • 8.7. Developments for access points

9. THERMAL MANAGEMENT FOR MOBILE DEVICES

  • 9.1.1. New 5G phones overheating
  • 9.1.2. 5G smartphone chipsets: which OEMs have mmWave
  • 9.1.3. mmWave costs more too
  • 9.1.4. Qualcomm's 5G antenna
  • 9.1.5. Apple's 5G delay and Intel withdraw from market
  • 9.2. Thermal Management Approaches for 5G Mobile Devices
    • 9.2.1. Thermal throttling
    • 9.2.2. Materials selection
    • 9.2.3. Heat dissipation
    • 9.2.4. Heat sinks and heat spreaders
    • 9.2.5. Heat pipes/ vapour chambers
    • 9.2.6. Vapour chambers: OEMs
    • 9.2.7. Samsung's cooling solution
    • 9.2.8. Huawei
    • 9.2.9. Nubia Red Magic 5G gaming phone
    • 9.2.10. Lenovo demonstrate the first 5G laptop
    • 9.2.11. Thermoelectric Cooling (TEC)
    • 9.2.12. Smartphone cooling now and in the future
  • 9.3. TIM for Mobile Devices
    • 9.3.1. Introduction
    • 9.3.2. Galaxy 3: teardown and how TIM is used
    • 9.3.3. Galaxy S6: teardown and how TIM is used
    • 9.3.4. Galaxy S7: teardown and how TIM is used
    • 9.3.5. Galaxy S7: teardown and how TIM is used
    • 9.3.6. Galaxy S9: teardown and how TIM is used
    • 9.3.7. Galaxy S9: teardown and how TIM is used
    • 9.3.8. Galaxy note 9 carbon water cooling system
    • 9.3.9. Samsung S10 and S10e: teardown and how TIM is used
    • 9.3.10. Galaxy S6 and S7 TIM area estimates
    • 9.3.11. Oppo R17: teardown and how TIM is used
    • 9.3.12. Huawei Mate Pro 30: teardown and how TIM is used
    • 9.3.13. Huawei Mate Pro 20: teardown and how TIM is used
    • 9.3.14. iPhone 4: teardown and how TIM is used
    • 9.3.15. iPhone 5: teardown and how TIM is used
    • 9.3.16. iPhone 7: teardown and how TIM is used
    • 9.3.17. iPhone X: teardown and how TIM is used
    • 9.3.18. LG v50 ThinQ 5G
    • 9.3.19. LG v60 ThinQ 5G
    • 9.3.20. RedMagic 5G
    • 9.3.21. Samsung Galaxy S10 5G
    • 9.3.22. Samsung Galaxy S20 5G
    • 9.3.23. Samsung Galaxy Note 10+ 5G
    • 9.3.24. Smartphone TIM estimate summary
    • 9.3.25. Thermal interface material and heat spreader forecast in smartphones

10. SUMMARY OF REPORT FORECASTS

  • 10.1. 5G station installation forecast (2020-2030) by frequency
  • 10.2. 5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto)
  • 10.3. MIMO size forecast (2020-2030)
  • 10.4. Antenna elements forecast
  • 10.5. Antenna PCB material forecast
  • 10.6. Power amplifier and beamforming component forecast
  • 10.7. Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area
  • 10.8. Die attach material forecasts by station size
  • 10.9. Die attach mass for GaN and LDMOS forecast
  • 10.10. Sintering market value forecast
  • 10.11. TIM forecast for 5G antenna
  • 10.12. TIM for 5G BBU
  • 10.13. Power consumption forecast for 5G
  • 10.14. TIM forecast for power supplies
  • 10.15. Total TIM forecast for 5G stations
  • 10.16. Thermal interface material and heat spreader forecast in smartphones
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.