株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

新しいPV (太陽電池) 材料の市場機会:2020-2040年

Materials Opportunities in Emerging Photovoltaics 2020-2040

発行 IDTechEx Ltd. 商品コード 943884
出版日 ページ情報 英文 206 Slides
納期: 即日から翌営業日
価格
新しいPV (太陽電池) 材料の市場機会:2020-2040年 Materials Opportunities in Emerging Photovoltaics 2020-2040
出版日: 2020年06月23日 ページ情報: 英文 206 Slides
概要

シリコンを超える先進PV (太陽電池) の市場は、2024年には約400億米ドルの市場機会を有すると予測されています。

当レポートでは、PV (太陽電池) 材料の市場機会を調査し、PVおよびPV材料市場の概要および現況、主な新材料の概要、特徴・性能、開発プログラム、主要企業・機関による取り組み、製造・コスト動向、市場の展望・予測などをまとめています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 市場機会:無機化合物半導体LLL-V PV材料

  • 概要
  • 毒性
  • 宇宙プログラム:IOFFE Institute, ITMO University
  • Boeing Spectrolab
  • NREL
  • コスト・価格の大幅削減
  • 屋内:軽量性
  • ソーラーカー技術の比較:Sono・Lightyear・Toyota

第4章 市場機会:セレン化銅インジウムガリウム (CIGS)

  • 概要
  • 動作原理
  • CIGS PVプロセス:Sunflare・Flisom・EMPA・Manz・Solar Frontier
  • CIGSの製造・材料・非毒性への道程
  • ITOの回避
  • Ascent Solar
  • より良いポリマー基板プロセス:KIER
  • Renovagen:高出力PV
  • Manz
  • Flisom
  • その他
  • 市場リーダー:Solar Frontier
  • 専門ニッチ:Sunflare

第5章 市場機会:有機OPVマテリアル

  • 概要
  • 競合環境
  • 商品化への進展
  • Heliatek
  • Opvius・Armor
  • デバイスアーキテクチャ・Sigma Aldrichの材料
  • 材料:Merck・DuPont Teijin
  • 選ばれる基板
  • 主なデバイスアーキテクチャ
  • ドナーポリマー
  • ドナー小分子
  • 主なアクセプター材料
  • 溶液処理の進歩
  • タンデムOPV
  • R2RソリューションとR2R蒸発の比較
  • R2Rの主な技術的課題
  • バリア/カプセル化の課題
  • 透明電極
  • 大きな進歩:NFA (非フラーレンアクセプター)、など

第6章 市場機会:ペロブスカイトPV材料

  • 概要
  • 構造・デバイスアーキテクチャ
  • 動作原理
  • アーキテクチャ
  • 提供価値・2040年までのロードマップ
  • ペロブスカイト材料
  • 効率性の理由
  • 効率と伝送
  • 鉛フリーペロブスカイト:ロードマップ
  • 寿命延長
  • フレキシブルペロブスカイト太陽電池
  • ペロブスカイトモジュールのコスト推計、など

第7章 複合技術・量子ドット・ワイルドカード

  • 複合技術太陽光発電
  • ペロブスカイトシリコンタンデム:25.2%の効率を記録
  • CIGSのペロブスカイト
  • 量子ドット
  • 毒性
  • ワイルドカード:2Dマテリアル・アンテナ

第8章 太陽光発電における伝導性ペースト

  • 概要
  • 焼成
  • 太陽光発電の主なコスト要因
  • ウエハあたりの銀含有量の削減
  • 市場シェア予測:電極のめっきとスクリーン印刷
  • 太陽光発電:ウエハの薄型化に向けたロードマップ
  • PV市場シェア予測:各種メタライゼーション技術
  • シリコンインク
  • 太陽電池の銅メタライゼーション
  • 銀ナノ粒子と薄膜太陽電池
  • PV・ヒーター:デジタル印刷

第9章 PVのバリア層

  • バリア・カプセル化の重要性
  • バリア性能要件(透過率)
  • バリア要件:柔軟性・回転性
  • プラスチック基板の課題
  • マルチレイヤーアプローチの基礎
  • R2Rバリアフィルム
  • ガラス・多層フィルム・多層インライン薄膜封止
  • TFEの傾向:堆積の過去・現在・未来
  • バリアソリューションのベンチマーキング
  • フレキシブルCIGS:市場予測、など
目次

Title:
Materials Opportunities in Emerging Photovoltaics 2020-2040
CIGS, GaAs, lll-V compound, perovskite, OPV, CdTe, conductor, barrier, TCO, ITO, paint, transparent, flexible.

Nearly $40bn in 2040 sales of advanced photovoltaics beyond silicon await.

New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.

See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?

Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?

Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.

The 206 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.

Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.

Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Purpose of this report
  • 1.2. Two worlds
  • 1.3. Anatomy of the photovoltaic business 2020-2040
  • 1.4. Primary conclusions: photovoltaics top ten manufacturers chemistry
  • 1.5. Primary conclusions: price-volume sensitivity by application
  • 1.6. Primary conclusions: cost progression 1976-2040
  • 1.7. Primary conclusions: thin film PV market
  • 1.8. Primary conclusions: cadmium telluride
  • 1.9. Primary conclusions: geographic PV materials demand
  • 1.10. CIGS PV forecasts
    • 1.10.1. Global output of thin film CIGS photovoltaics $M and MWp 2000-2018
    • 1.10.2. Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040
  • 1.11. Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040
  • 1.12. Global market for perovskite PV $M
  • 1.13. Global market for OPV $M

2. INTRODUCTION

  • 2.1. Overview: amazing virtuosity
    • 2.1.1. Extreme vehicles and weak light create new markets
    • 2.1.2. Photovoltaic cooking without batteries
  • 2.2. The energy positive house
  • 2.3. Ever larger solar farms
  • 2.4. Solar cars: Hyundai, Tesla
  • 2.5. Winning electromagnetic frequencies
  • 2.6. SOFT report on photovoltaics
  • 2.7. Some of the important parameters
  • 2.8. Single crystal scSi vs polycrystal pSi vs amorphous
  • 2.9. Amorphous silicon
  • 2.10. Big picture: wafer vs thin film photovoltaics 2020-2040
  • 2.11. PV mechanisms: status, benefits, challenges, market potential compared
    • 2.11.1. Five mechanisms compared
    • 2.11.2. Best research-cell efficiencies assessed 1975-2020
  • 2.12. Important PV options beyond silicon compared
  • 2.13. Thirteen new photovoltaic formats creating materials markets
  • 2.14. Photovoltaics progresses to become paint and user material
  • 2.15. Solar piazzas, driveways, roads: Platio Hungary
  • 2.16. MEMS PV
  • 2.17. Transparent, indoor and underwater PV materials needed
  • 2.18. Materials opportunities from integration with other harvesting materials
    • 2.18.1. Triboelectric TENG with other harvesting: experimental
    • 2.18.2. Integration in smart watches

3. INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES

  • 3.1. Overview
  • 3.2. Toxicity
  • 3.3. Space program: IOFFE Institute, ITMO University
  • 3.4. Boeing Spectrolab
  • 3.5. NREL
  • 3.6. Costs and prices can be greatly reduced
  • 3.7. Indoors: Lightricity
  • 3.8. Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV
    • 3.8.1. Solar vehicle chemistry
    • 3.8.2. Solar vehicle format

4. COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES

  • 4.1. Overview
  • 4.2. Operating principle
  • 4.3. CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier
  • 4.4. CIGS production, materials, routes to non toxic
  • 4.5. Avoiding ITO
  • 4.6. Ascent Solar
  • 4.7. Better polymer substrate process: KIER
  • 4.8. Renovagen: high power PV like a carpet roll
  • 4.9. Manz
  • 4.10. Flisom customizable flexible
  • 4.11. Other CIGS PV in action on vehicles
  • 4.12. Market leader Solar Frontier
  • 4.13. Sunflare: specialist niches

5. ORGANIC OPV MATERIALS OPPORTUNITIES

  • 5.1. Overview
  • 5.2. Competitive situation
  • 5.3. OPV progress to commercialisation 2000-2040
  • 5.4. Heliatek
  • 5.5. Opvius and Armor
  • 5.6. Device architecture and Sigma Aldrich materials
  • 5.7. Materials: Merck, DuPont Teijin
  • 5.8. What substrates to choose?
  • 5.9. Typical device architectures
  • 5.10. Film morphology and degradation control for bulk heterojunction
  • 5.11. R2R solution vs R2R evaporation
  • 5.12. Donor polymers
  • 5.13. Donor small molecules
  • 5.14. Typical acceptor materials
  • 5.15. Progress in solution processing
  • 5.16. Progress in tandem cell evaporation
  • 5.17. Solution processed 17.5% tandem OPV
  • 5.18. R2R solution vs R2R evaporation
  • 5.19. Major technical challenges with R2R
  • 5.20. Barrier/encapsulation challenge
  • 5.21. Transparent electrode
  • 5.22. Big advance 2018- 2020: non-fullerene acceptors NFA

6. PEROVSKITE PV MATERIAL OPPORTUNITIES

  • 6.1. Overview
  • 6.2. Perovskite structure and device architecture
  • 6.3. Working principle
  • 6.4. Architectures
  • 6.5. Value propositions and roadmap to 2040
  • 6.6. Perovskite materials
  • 6.7. Why perovskite is so efficient
  • 6.8. Efficiency versus transmission
  • 6.9. Roadmap to lead-free perovskite
  • 6.10. Improving life
  • 6.11. Flexible perovskite solar cells
  • 6.12. Deposition processes for perovskite films
  • 6.13. Perovskite module cost estimation
  • 6.14. Future perovskite PV system cost breakdown

7. DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES

  • 7.1. Dual technology photovoltaics
  • 7.2. Perovskite silicon tandem: record 25.2% efficiency
  • 7.3. Perovskite on CIGS
  • 7.4. Quantum dot
  • 7.5. Toxicity
  • 7.6. Wild cards: 2D materials, nantennas
    • 7.6.1. 2D materials
    • 7.6.2. Rectenna nantenna-diode

8. CONDUCTIVE PASTES IN PHOTOVOLTAICS

  • 8.1. Overview
  • 8.2. Firing
  • 8.3. Major cost drivers for photovoltaics
  • 8.4. Reducing silver content per wafer: industry consensus
  • 8.5. Expected market share: plating and screen printing of electrodes
  • 8.6. Photovoltaics: roadmap towards ever thinner wafers
  • 8.7. Photovoltaics market share forecast for different metallization technologies
  • 8.8. Silicon inks: made redundant before seeing daylight?
  • 8.9. Copper metallization in solar cells
  • 8.10. Silver nanoparticles adopted for thin film photovoltaics?
  • 8.11. PV and heater: digital printing comes of age?

9. BARRIER LAYERS FOR PHOTOVOLTAICS

  • 9.1. Why barriers and encapsulation?
  • 9.2. Barrier performance requirements (permeation rates)
  • 9.3. Barrier requirements: towards flexibility and rollability
  • 9.4. Plastic substrates are a challenge
  • 9.5. The basis of the multi-layer approach
  • 9.6. Status of R2R barrier films in performance, web width and readiness/scale
  • 9.7. Challenges of R2R barrier film production
  • 9.8. From glass to multi-layer films to multi-layer inline thin film encapsulation
  • 9.9. Trends in TFE: Past, present and future of deposition
  • 9.10. Benchmarking different barrier solutions
  • 9.11. Evolution of production parameters to enable multi-layer barrier cost reduction
  • 9.12. Flexible CIGS: market forecast sqm and value by barrier technology