特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

電子皮膚パッチ市場:2020年~2030年

Electronic Skin Patches 2020-2030

発行 IDTechEx Ltd. 商品コード 936178
出版日 ページ情報 英文 405 Slides
納期: 即日から翌営業日
価格
電子皮膚パッチ市場:2020年~2030年 Electronic Skin Patches 2020-2030
出版日: 2020年05月14日 ページ情報: 英文 405 Slides
担当者のコメント
薄型で伸縮性を持つフレキシブルデバイスである電子皮膚パッチは、ウェアラブルデバイスよりも、さらに身近に情報データを収集できるようになります。また装着していることを意識せずに、健康予防や在宅ケアなど幅広い利用価値や可能性を生み出すと言われております。
概要

当レポートでは、電子皮膚パッチ市場について調査分析し、概要、市場分析と予測、ケーススタディなどについて、体系的な情報を提供します。

目次

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 皮膚パッチによる糖尿病管理

  • 背景:糖尿病の件数
  • 背景:増加中の糖尿病
  • 背景:糖尿病の費用
  • 糖尿病管理プロセス
  • 糖尿病管理デバイスのロードマップ:サマリー
  • 糖尿病管理デバイスのロードマップ:センサー
  • 持続的血糖モニタリング (CGM) のケース
  • 典型的なCGMデバイスの構造
  • CGMセンサーの構造
  • CGMは皮膚パッチ経由で展開、など

第4章 心血管モニタリングの皮膚パッチ

  • イントロダクション:ウェアラブルデバイス経由で心血管モニタリング
  • イントロダクション:生体電位を測定
  • 技術の概要:生体電位を測定する回路
  • イントロダクション:心電図 (ECG、EKG)
  • 心臓モニタリング用デバイス
  • 心臓モニタリングデバイスの種類:皮膚パッチ
  • 企業と製品タイプ
  • 技術概要:電極特性
  • 使い捨てAg/AgCl電極
  • 電極:従来のアプローチ、など

第5章 一般病床のモニタリング

  • イントロダクション
  • 皮膚パッチ経由でワイヤレス入院患者モニタリング
  • 皮膚パッチ経由で妊娠モニタリング
  • 皮膚パッチ経由で一般外来モニタリング
  • 市場予測

第6章 温度センシングの皮膚パッチ

  • イントロダクション:体温
  • 温度センシング技術オプション
  • 医療用温度センシングのアプローチと規格
  • 温度センシング向け皮膚パッチ
  • 皮膚パッチの温度センシング:ユースケース、など

第7章 皮膚パッチによる電気刺激

  • イントロダクション:電気刺激の種類
  • 電気刺激の区別
  • 電気刺激の命名
  • 電気刺激製品の種類
  • 医療機器と非医療機器
  • 生体電子工学による医療:定義と背景
  • 生体電子工学による医療の主な形態
  • 生体電子工学による医療の進化、など

第8章 イオン導入の皮膚パッチ:化粧品・ドラッグデリバリー

  • イントロダクション:イオン導入
  • 化粧品
  • ドラッグデリバリー
  • 逆イオン導入
  • 市場予測と結論

第9章 発汗センシング:発汗速度とバイオマーカー

  • イントロダクション:発汗センシング
  • 発汗速度の測定
  • 技術の概要:生体インピーダンスの測定
  • 技術の概要:ガルバニック皮膚反応 (GSR)
  • 技術の概要:発汗の湿度センサー、など

第10章 皮膚パッチによる創傷モニタリング・治療

第11章 皮膚パッチによるモーションセンシング

第12章 インプラントに対する通信ゲートウェイとしての皮膚パッチ

第13章 皮膚パッチのその他の応用

第14章 市場予測

目次

Title:
Electronic Skin Patches 2020-2030
The most comprehensive assessment on the commercialization of flexible, wearable, smart skin patches.

The market for electronic skin patches will be worth over $20bn by 2023.

This report characterizes the markets, technologies and players in electronic skin patches. With coverage across 28 application areas and over 120 companies, historic market data from 2010-2019 and market forecasts from 2020 to 2030, it is the most comprehensive study compiled for this emerging product area. It reveals significant opportunity, with nearly $10bn in revenue made from electronic skin patches in 2019, and a forecast for this to grow to nearly $40bn by 2030.

Skin patches are wearable products attached to the skin. The electronic element involves the integration of electronic functionality such as sensors, actuators, processors and communication, allowing the devices to become connected and "smart". In many ways, skin patches act as the ultimate wearable electronic devices, augmenting the wearer with minimal encumbrance and maximum comfort. As such, interest in electronic skin patches soared as a by-product of the significant hype and market growth around "wearables" starting in 2014.

However, several product types within the sector transcend this hype. Several skin patch product areas, particularly in diabetes management and cardiovascular monitoring, have superseded incumbent options in established markets to create billions of dollars of new revenue each year for the companies at the forefront of this wave. However, success is not ubiquitous; each market discussed within this report sits within a unique ecosystem, with different players, drivers, limitations and history to build on.

As such, the report looks at each of the application areas for electronic skin patches in turn, discussing the relevant technology, product types, competitive landscape, industry players, pricing, historic revenue, and market forecasts. The areas covered include diabetes management, cardiac devices, medical patient monitoring (both inpatient and outpatient), motion sensing, temperature sensing, drug and cosmetic delivery patches, smart bandages for wound care and more. For the established markets within the sector, the report contains historic revenue data by company back to 2010. The report also contains detailed market forecasting over 10 years for each of the key application areas.

The product category of "electronic skin patches" conceals a significant amount of diversity. Whilst many people may imagine skin patches to be thin, highly conformable devices that sit close to the skin, the reality is that many of the most successful products today are still relatively bulky devices. As such, the report also contains a discussion of technology areas relevant to the future development of smart patches, particularly around areas such as flexible, stretchable and conformal electronic components. Development of these technologies will not only enable more products to be deployed as skin patches, but will also improve the form factor of electronic skin patches that already exist.

The research behind the report has been compiled over several years by IDTechEx analysts. It follows existing coverage of areas such as wearable technology, flexible electronics, stretchable and conformal electronics, electronic textiles, advanced wound care, bioelectronics and more. The methodology involved a mixture of primary and secondary research, with a key focus on speaking to executives and scientists from companies developing commercial electronic skin patches. As such, the report compiles case studies of over 120 companies and projects, each updated over time and compared within their appropriate product ecosystems.

Unique position and experience behind the report

IDTechEx is afforded a particularly unique position in covering this topic. The experienced analyst team builds on decades of experience covering emerging technology markets, and particularly areas such as flexible electronics which are central to electronic skin patches. This has been historically supported by IDTechEx's parallel activities in organising the leading industry conferences and exhibitions covering flexible and wearable electronics, as well as smaller events covering specific innovation trends such as for healthcare sensors or related areas. IDTechEx has the unique ability to curate a network in these topic areas, facilitating the reporting in this report.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Executive introduction: Electronic skin patches
  • 1.2. Application overview
  • 1.3. Applications, market sizes and outlook
  • 1.4. CGM leads the way
  • 1.5. Insulin pumps and patch pumps
  • 1.6. Diabetes management: full historic data and forecast
  • 1.7. Monitoring the heart via skin patches
  • 1.8. Players and product types in cardiac monitoring
  • 1.9. Cardiac monitoring skin patches: Historic data: 2010-2019
  • 1.10. Cardiac monitoring skin patches: Market forecasts
  • 1.11. Skin patches patient monitoring: Historic data: 2010-2019
  • 1.12. Skin patch patient monitoring: Market forecasts: 2020-2030
  • 1.13. Skin patch temperature sensing: Use cases across 12 case studies
  • 1.14. Key conclusions: Temperature sensing skin patches
  • 1.15. Electrical stimulation product types
  • 1.16. Skin patches in bioelectronic medicine
  • 1.17. Electrical stimulation via skin patches: Market data (2010-2019)
  • 1.18. Electrical stimulation via skin patches: Market forecast (2020-2030)
  • 1.19. Introduction - Iontophoresis
  • 1.20. Iontophoresis via skin patches: Market data (2010-2019)
  • 1.21. Iontophoresis via skin patches: Market forecast (2020-2030)
  • 1.22. Key conclusions: Iontophoresis
  • 1.23. Examples of players from case studies

2. INTRODUCTION

  • 2.1.1. The case for skin patches: Augmenting the human body
  • 2.1.2. The case for skin patches: Improving device form factor
  • 2.1.3. Definitions and exclusions
  • 2.1.4. History of skin patches
  • 2.1.5. Applications, market sizes and outlook
  • 2.1.6. Reimbursement drives commercial business models
  • 2.1.7. Patents: Total active patents by assignee
  • 2.1.8. Patents over time
  • 2.1.9. Patents: Active and strong patents by assignee
  • 2.1.10. Context: Wearables hype
  • 2.1.11. Glossary
  • 2.2. Application overview
    • 2.2.1. Skin patches competing with established products
    • 2.2.2. New market creation around skin patches
    • 2.2.3. Section contents

3. DIABETES MANAGEMENT VIA SKIN PATCHES

  • 3.1.1. Background: Diabetes in numbers
  • 3.1.2. Background: Diabetes on the rise
  • 3.1.3. Background: The cost of diabetes
  • 3.1.4. Diabetes management process
  • 3.1.5. Diabetes management device roadmap: Summary
  • 3.1.6. Diabetes management device roadmap: Sensors
  • 3.1.7. The case for continuous glucose monitoring (CGM)
  • 3.1.8. Anatomy of a typical CGM device
  • 3.1.9. Anatomy of a CGM sensor
  • 3.1.10. CGM is deployed via skin patches
  • 3.1.11. Non-invasive glucose monitoring?
  • 3.1.12. Opinions against non-invasive glucose monitoring
  • 3.2. Key players in continuous glucose monitoring (CGM)
    • 3.2.1. CGM: Overview of key players
    • 3.2.2. Abbott Laboratories
    • 3.2.3. Abbott: FreeStyle Libre
    • 3.2.4. Abbott: SMBG vs CGM comparison
    • 3.2.5. Dexcom
    • 3.2.6. Medtronic
    • 3.2.7. Medtronic: Patents in CGM
    • 3.2.8. Roche
    • 3.2.9. Roche: Patents in CGM
    • 3.2.10. Senseonics
  • 3.3. Other players
    • 3.3.1. Ascensia & POCTech
    • 3.3.2. AgaMatrix & WaveForm Technologies
    • 3.3.3. PKVitality
    • 3.3.4. Sano
    • 3.3.5. DiabeLoop
    • 3.3.6. Verily / Google: Contact lenses
  • 3.4. Insulin delivery
    • 3.4.1. Diabetes management device roadmap: Insulin delivery
    • 3.4.2. Insulin pumps: Introduction
    • 3.4.3. Insulin pumps currently available
    • 3.4.4. Insulin pump breakdown
    • 3.4.5. Insulin patch pumps
    • 3.4.6. Example: Progress from Medtronic
    • 3.4.7. Outlook for insulin pumps
  • 3.5. Linking insulin pumps and CGM: Towards an artificial pancreas
    • 3.5.1. Today: Hybrid closed loop systems
    • 3.5.2. Example: Progress from Medtronic
    • 3.5.3. The objective: Closing the feedback loop
    • 3.5.4. Examples and partnerships
  • 3.6. Market data: Historic & forecasts
    • 3.6.1. A shifting focus in diabetes management - Historic data: 2010-2019
    • 3.6.2. Test strip business in decline
    • 3.6.3. The growth of CGM accelerates
    • 3.6.4. Diabetes management: full historic data and forecast
    • 3.6.5. Full dataset with table: 2010-2019 (historic) & 2020-2030 (forecast)

4. CARDIOVASCULAR MONITORING SKIN PATCHES

  • 4.1.1. Introduction - Cardiovascular monitoring via wearable devices
  • 4.1.2. Introduction - Measuring biopotential
  • 4.1.3. Technology overview - the circuitry for measuring biopotential
  • 4.1.4. Introduction - Electrocardiography (ECG, or EKG)
  • 4.1.5. Devices for cardiac monitoring
  • 4.1.6. Cardiac monitoring device types - skin patches
  • 4.1.7. Companies and product types
  • 4.1.8. Technology overview - electrode properties
  • 4.1.9. Disposable Ag/AgCl electrodes
  • 4.1.10. Electrodes: Traditional approaches
  • 4.1.11. Skin patches with disposable electrodes
  • 4.1.12. Skin patches with integrated electrodes
  • 4.1.13. Reimbursement codes for wearable cardiac monitors
  • 4.1.14. 2021: New reimbursement structure in place
  • 4.2. Players
    • 4.2.1. Summaries and interviews with 20 industry players
    • 4.2.2. BioTelemetry, Inc.
    • 4.2.3. BioTelemetry: Timeline
    • 4.2.4. iRhythm
    • 4.2.5. ScottCare
    • 4.2.6. VivaLNK
    • 4.2.7. Fukuda Denshi
    • 4.2.8. Fujita Medical Instruments
    • 4.2.9. Bittium
    • 4.2.10. Byteflies & Quad Industries
    • 4.2.11. Cardiomo
    • 4.2.12. Vivomi
    • 4.2.13. QT Medical
    • 4.2.14. SWMedical
    • 4.2.15. SWMedical - CardiNova
    • 4.2.16. Seers Technology
    • 4.2.17. Rooti
    • 4.2.18. Preventice Solutions
    • 4.2.19. Sigknow
    • 4.2.20. Borsam
    • 4.2.21. Cortrium
    • 4.2.22. Qardio
    • 4.2.23. Holst Center: Skin patches
    • 4.2.24. Medtronic: SEEQ MCT (discontinued)
    • 4.2.25. LumiraDx / FitLinxx: Ampstrip (discontinued)
  • 4.3. Competition with other form factors
    • 4.3.1. Other form factors for ambulatory cardiac monitoring
    • 4.3.2. Wearable vs implantable monitoring
    • 4.3.3. Example: Medtronic (SEEQ & LINQ)
    • 4.3.4. Comparison: Chest straps
    • 4.3.5. Comparison: Apparel
    • 4.3.6. Comparison: Portable devices
    • 4.3.7. Comparison: Smartwatch optical HRM
  • 4.4. Market data and forecasts
    • 4.4.1. Market overview and forecasts
    • 4.4.2. Cardiac monitoring skin patches: Historic data: 2010-2019
    • 4.4.3. Cardiac monitoring skin patches: Market forecasts
    • 4.4.4. Comparison - 2019 & 2020 report forecasts
    • 4.4.5. Full dataset with table: 2010-2019 (historic) & 2020-2030 (forecast)
    • 4.4.6. Key conclusions: cardiac monitoring skin patches

5. GENERAL PATIENT MONITORING

  • 5.1.1. Introduction
  • 5.2. Wireless inpatient monitoring via skin patches
    • 5.2.1. Inpatient monitoring: The case for removing the wires
    • 5.2.2. Players and approaches
    • 5.2.3. Sensium (Surgical Company Group)
    • 5.2.4. VitalConect
    • 5.2.5. Isansys Lifecare
    • 5.2.6. Leaf Healthcare
  • 5.3. Pregnancy monitoring with skin patches
    • 5.3.1. GE Healthcare - Monica Novii
  • 5.4. General outpatient monitoring with skin patches
    • 5.4.1. Qualcomm Life
    • 5.4.2. Qualcomm Life / Capsule Technologies
    • 5.4.3. LifeSignals
    • 5.4.4. Samsung
    • 5.4.5. MC10
    • 5.4.6. DevInnova / Scaleo Medical
    • 5.4.7. Avanix
    • 5.4.8. Avanix - business model and target milestones
  • 5.5. Market forecasts
    • 5.5.1. Skin patches patient monitoring: Historic data: 2010-2019
    • 5.5.2. Skin patch patient monitoring: Market forecasts: 2020-2030
    • 5.5.3. Conclusions & related areas

6. TEMPERATURE SENSING SKIN PATCHES

  • 6.1. Introduction - Body Temperature
  • 6.2. Temperature sensing technology options
  • 6.3. Approaches and standards for medical temperature sensing
  • 6.4. Skin patches for temperature sensing
  • 6.5. Skin patch temperature sensing: Use cases across 12 case studies
  • 6.6. VivaLNK
  • 6.7. VivaLNK & Reckitt Benckiser
  • 6.8. Blue Spark
  • 6.9. Blue Spark & TempTraq®
  • 6.10. Life Science Technology
  • 6.11. Isansys Lifecare
  • 6.12. Raiing Medical
  • 6.13. Bonbouton
  • 6.14. CSEM
  • 6.15. Covestro
  • 6.16. Chois Technology
  • 6.17. Alternative options: Tympanic temperature sensing
  • 6.18. Key conclusions: Temperature sensing skin patches

7. ELECTRICAL STIMULATION WITH SKIN PATCHES

  • 7.1.1. Introduction: Types of electrical stimulation
  • 7.1.2. Differentiation for electrical stimulation
  • 7.1.3. Nomenclature in electrical stimulation
  • 7.1.4. Electrical stimulation product types
  • 7.1.5. Medical vs non-medical devices
  • 7.1.6. Bioelectronic Medicine: Definition and background
  • 7.1.7. Major Forms of Bioelectronic Medicine
  • 7.1.8. The Evolution of Bioelectronic Medicine
  • 7.1.9. Skin patches in bioelectronic medicine
  • 7.2. TENS
    • 7.2.1. TENS - Introduction
    • 7.2.2. Innovative Health Solutions: NSS-2 Bridge
    • 7.2.3. BeWellConnect: MyTens
    • 7.2.4. NeuroMetrix: Quell
    • 7.2.5. Theranica: Nerivio Migra
  • 7.3. EMS / NMES / FES
    • 7.3.1. EMS, NMES and FES
    • 7.3.2. Applications of EMS / NMES
    • 7.3.3. Example: Russian Stimulation
    • 7.3.4. Example: Therapeutic settings and uses
    • 7.3.5. Properties of the stimulation (as presented with a therapeutic focus)
    • 7.3.6. First Kind Medical: geko
    • 7.3.7. Example: HiDow
    • 7.3.8. Hivox Biotek
  • 7.4. Market data and forecasts
    • 7.4.1. Electrical stimulation via skin patches: Market data (2010-2019)
    • 7.4.2. Electrical stimulation via skin patches: Market forecast (2020-2030)

8. IONTOPHORESIS SKIN PATCHES: COSMETICS AND DRUG DELIVERY

  • 8.1.1. Introduction - Iontophoresis
  • 8.2. Cosmetics
    • 8.2.1. Cosmetic skin patches
    • 8.2.2. Estée Lauder
    • 8.2.3. BioBliss™, Iontera, Patchology
    • 8.2.4. Feeligreen (Feeligold)
  • 8.3. Drug delivery
    • 8.3.1. Iontophoresis for drug delivery
    • 8.3.2. Drugs studied for iontophoretic delivery
    • 8.3.3. Commercial activity with drug delivery patches
    • 8.3.4. Feeligreen (Feelicare)
    • 8.3.5. Seoul National University: Parkinson's medication via skin patches
  • 8.4. Reverse iontophoresis
    • 8.4.1. Example: GlucoWatch
    • 8.4.2. Nemaura Medical: sugarBEAT
  • 8.5. Market forecasts and conclusions
    • 8.5.1. Iontophoresis via skin patches: Market data (2010-2019)
    • 8.5.2. Iontophoresis via skin patches: Market forecast (2020-2030)
    • 8.5.3. Key conclusions: Iontophoresis

9. SWEAT SENSING: SWEAT RATE AND BIOMARKERS

  • 9.1.1. Introduction - Sweat sensing
  • 9.1.2. Measuring sweat rate
  • 9.1.3. Technology overview - measuring bioimpedance
  • 9.1.4. Technology overview - Galvanic skin response (GSR)
  • 9.1.5. Technology overview - humidity sensors for sweat
  • 9.1.6. GE Global Research
  • 9.2. Sensing biomarkers in sweat
    • 9.2.1. Technology overview - chemical sensing in sweat
    • 9.2.2. Sweat vs other sources of analytes
    • 9.2.3. Analytes in sweat
    • 9.2.4. Technology overview: Chemical sensing
    • 9.2.5. Biolinq
    • 9.2.6. Kenzen
    • 9.2.7. Milo Sensors
    • 9.2.8. Eccrine Systems
    • 9.2.9. PARC / UCSD
    • 9.2.10. Stanford and UC Berkeley
    • 9.2.11. Xsensio
    • 9.2.12. Epicore Biosystems
    • 9.2.13. Key conclusions: Sweat sensing

10. WOUND MONITORING AND TREATMENT WITH SKIN PATCHES

  • 10.1. Wound Monitoring
  • 10.2. Wound Monitoring: KAUST
  • 10.3. Wound Monitoring: Purdue University
  • 10.4. Wound Monitoring: Tufts University
  • 10.5. Wound Monitoring: Tyndall National Institute
  • 10.6. Wound Monitoring: UC Berkeley
  • 10.7. Wound Monitoring: UCSD
  • 10.8. Wound Monitoring: VTT
  • 10.9. Wound Treatment

11. MOTION SENSING WITH SKIN PATCHES

  • 11.1.1. Introduction - Monitoring motion via skin patches
  • 11.1.2. Different modes for sensing motion
  • 11.2. Measuring motion with inertial measurement units
    • 11.2.1. Introduction - Inertial measurement units
    • 11.2.2. Measuring motion with IMUs: Examples
    • 11.2.3. Value chain and examples of players
    • 11.2.4. IMUs in skin patches
    • 11.2.5. Measuring motion with conformal sensors
    • 11.2.6. Introduction - alternatives for measuring motion
    • 11.2.7. Technology overview - Resistive/piezoresistive sensing
    • 11.2.8. Players and industry dynamic
    • 11.2.9. Peratech
    • 11.2.10. Quantum tunnelling composite: QTC®
    • 11.2.11. QTC® vs. FSR™ vs. piezoresistor?
    • 11.2.12. Bebop Sensors
    • 11.2.13. Bainisha
    • 11.2.14. Technology overview - Capacitive sensing
    • 11.2.15. Parker Hannifin
    • 11.2.16. Stretchsense
    • 11.2.17. LEAP Technology
    • 11.2.18. Technology overview - Piezoelectric sensing
  • 11.3. Application examples
    • 11.3.1. Applications for skin patch motion sensors
    • 11.3.2. Case study - Concussion detection
    • 11.3.3. X2 Biosystems
    • 11.3.4. US Military head trauma patch / PARC
    • 11.3.5. Key conclusions: Motion sensing

12. SKIN PATCHES AS A COMMUNICATION GATEWAY TO IMPLANTS

  • 12.1.1. Communication with implants
  • 12.2. Examples in bioelectronic medicine
  • 12.2.1. Skin patches with bioelectronic medicine implants
  • 12.2.2. NeuroRecovery Technologies
  • 12.2.3. Stimwave: Freedom SCS
  • 12.2.4. SPR Therapeutics: Sprint PNS
  • 12.2.5. Bioness: StimRouter
  • 12.3. Other examples
    • 12.3.1. Proteus Digital Health
    • 12.3.2. GraftWorx

13. OTHER APPLICATIONS OF SKIN PATCHES

  • 13.1. Bladder volume sensing (wearable ultrasound)
    • 13.1.1. Novioscan
    • 13.1.2. Triple W - D Free
  • 13.2. Other healthcare & medical applications
    • 13.2.1. Acoustic respiration rate (Acurable, Masimo, etc.)
    • 13.2.2. UV protection
    • 13.2.3. MC10 & L'Oréal: Wisp
    • 13.2.4. Lief Therapeutics: Stress Management
  • 13.3. Others
    • 13.3.1. EOG - eye tracking with skin patches

14. MARKET FORECASTS

  • 14.1.1. Forecast details and assumptions