株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

電子機器向けエネルギーハーベスティング:2020年~2040年

Energy Harvesting for Electronic Devices 2020-2040

発行 IDTechEx Ltd. 商品コード 933731
出版日 ページ情報 英文 214 Slides
納期: 即日から翌営業日
価格
電子機器向けエネルギーハーベスティング:2020年~2040年 Energy Harvesting for Electronic Devices 2020-2040
出版日: 2020年04月29日 ページ情報: 英文 214 Slides
担当者のコメント
環境意識が高まり、省電力デバイスが普及してきたことにより、電子機器向けのエネルギーハーベスティング市場は拡大する見込みです。
概要

世界初のセルフパワーのスマートウォッチが登場しました。年間10億規模のハーベスター (発電デバイス) の可能性が、同規模のモノのインターネット (IoT) ノードに続くと見られています。エネルギーハーベスティング (環境発電) は、携帯電話やコンピューターの登場が当てはまらなかった時代に、これらを実現する重要な技術です。エネルギーハーベスティングモジュールは、2030年までに20億米ドルを上回ると予想されています。

当レポートでは、電子機器向けエネルギーハーベスティング市場について調査分析し、ニーズ、課題、可能性に焦点を当てて、体系的な情報を提供します。

目次

第1章 エグゼクティブサマリーと結論

第2章 新しい市場動向

  • 概要
  • 電子機器のエネルギーハーベスティングの特徴
  • エネルギーハーベスティングシステムの設計
  • ピコグリッド
  • ピコ製品
  • 電力の提供:ハーベスティング向け技術の選択
  • フレキシブル・マルチモードハーベスターへ
  • フレキシブルエネルギーハーベスティング・センシングの動向
  • モーションのエネルギーハーベスティング:トランスデューサーオプションの比較

第3章 エレクトロニクス向け新興の太陽光発電 (PV) 技術

  • 電子機器の太陽光発電 (PV) の例
  • PVのメカニズム
  • ウエハー vs. 薄膜PV
  • PVの動向と優先順位
  • 単結晶 vs. 多結晶
  • アモルファスシリコン
  • 薄膜 vs. 硬質シリコン
  • シリコンを超える重要なPVオプションの比較
  • 主流のエレクトロニクス向けSi代替品の生産準備
  • セルの効率
  • 太陽光発電 (PV) ワイルドカード

第4章 エレクトロニクス向け摩擦電気ハーベスティング技術

  • 概要
  • 基本
  • 対象の応用
  • 摩擦電気誘電シリーズ
  • 材料の機会
  • TENGとその他のハーベスティングとの組み合わせ

第5章 エレクトロニクス向け熱電・焦電ハーベスティング

  • 基本
  • エレクトロニクス向けTEに対するSOFT
  • 商業・差し迫った応用の例
  • Gentherm Global Power Technologies
  • Marlow Industries
  • Matrix Industries
  • EnOcean
  • KCF Technologies
  • 自動車とIoT
  • PowerPot?、Biolite?、Spark?
  • その他の業界、軍用
  • コラボレーション、合併、撤退
  • 影響
  • Pyroelectric underwhelms

第6章 電気力学

  • 基本
  • EnOcean GmbH、EnOcean Alliance
  • セイコーのキネティック (自家発電時計)
  • Kinetron
  • Kinetronのマイクロタービン
  • 直線運動を利用
  • 人の動きを利用
  • クランク充電のコンシューマーエレクトロニクス
  • 風力、水力
  • 6D 動きを利用
  • Witt Energy

第7章 圧電

  • 基本
  • 圧電ハーベスターの応用:モード別
  • 製造:典型的なプロセス
  • プリンテッド・フレキシブル圧電ハーベスター
  • リン酸ガリウム
  • 使い捨て・インプラント・ウェアラブル向け圧電コラーゲン
  • MEMS
  • MEMSハーベスティングの例
  • 圧電スイッチ
  • 応用と研究
  • 人体向け圧電ハーベスター
  • インプラント向けコンフォーマル圧電ハーベスティング
  • 内耳
  • 手首用健康モニター
  • 患者行動モニタリング
  • 自動車・航空宇宙
  • Algra

第8章 人為的な周囲の電磁放射、その他

  • その他の用途向け電磁放射
  • 電源ケーブル磁界
  • セルラー通信
  • テラヘルツ放射
  • 微生物燃料電池、その他のオプション
目次

Title:
Energy Harvesting for Electronic Devices 2020-2040
Materials, self-charging device opportunities, technology roadmaps, forecasts.

Passing $2bn by 2030, energy harvesting modules become key to smart watches, IoT and more.

The new 215 page IDTechEx report, "Energy Harvesting for Electronic Devices 2020-2040" comes at just the right time. The world's first self-powered smart watches have just arrived. They are not full-function but we are getting there. That billion a year harvester potential will be followed by similar numbers of Internet of Things nodes but why will Tesla jump in? Energy harvesting is a key enabling technology for these when it was not the case for the emergence of mobile phones and computers. Indeed, the hand crank/solar radio graduating to be the pendulum generator/solar watch shows how two forms of harvesting in one device are increasingly seen, one smart watch melding thermoelectrics and solar.

Indeed, wireless, no-battery building controls harvest up to three modes. That multiplier effect powers demand well beyond $2 billion in 2030 and much more beyond, on IDTechEx 20 year forecasts. What next? Winners? Losers? Technology and sales forecasts? All in the report because of its unique scope and PhD level insights. Low power wireless networks, 5G, smart skin patches electrically powered by sweat, implants and medical wearables triboelectrically and electrodynamically powered by heartbeats, temperature differences, body movements. All are on the way but there is more.

The 25 page executive summary and conclusions is easily read by those in a hurry. Many new infograms pull together the needs, challenges, potential and compare forecasts/ leaders/ market drivers and battery elimination milestones ahead. Dip into the next 25 pages of new 20 year forecasts as you wish - triboelectric, photovoltaic, electrodynamic, thermoelectric, piezoelectric and other backed by forecasts for those smart watches, pico products, wearable technologies, medical, IoT and other uses. Understand why Apple and Boeing will be involved.

Chapter 2 introduces the principles, compares the technologies in many ways including vibration harvesting comparisons, what exactly is needed and 38 companies to contact in IoT, LPWAN and so on. Chapter 3 explains 12 photovoltaic technologies and their future with many infograms. Significance of the 2020 Garmin smart watch having solar glass, why is stretchable photovoltaics coming in? It is all here.

Chapter 4 explains why IDTechEx believes triboelectrics is coming from nowhere with its initial sales of dust-filtering self-charging face masks in 2019 to be a strong contender overall. It will use non-toxic, affordable materials in a dazzling array of applications. An example is work on a smart watch integral battery + harvester in one smart composite. The Chinese government is massively supporting triboelectric harvester research with many research centres and over 200 PhD projects at a time.

Chapter 5 explores the burgeoning thermoelectric improvements and applications from smart watches to IoT nodes and fit-and-forget industrial uses. Pyroelectrics get less mention because of its poor potential. Chapter 6 surprises with electrodynamics technology presented and how has already replaced tens of millions of batteries by using microturbine generators in electronic toilets and pipeline sensors, similar electrodynamics in Seiko, Swatch, Tissot and many more watches. Hand-crank and pull-charged medical and consumer electronics are proliferating. Why the big effort on electrodynamic and thermoelectric harvesting in humans? We need fit-and-forget implants dealing with the epidemic of diabetes. The pacemaker has already saved over three million lives but the 600,000 pacemakers now implanted every year have batteries lasting no more than seven years. That is part of the answer.

Chapter 7 does it all for piezoelectrics. Chapter 8 rounds off with harvesting man-made ambient electromagnetic radiation from 50Hz power lines to the new terahertz inventions and also other harvesting options.

Throughout these technology chapters there are common themes such as the immense amount of new work on flexible, transparent, biocompatible and stretchable versions and how they will transform wearables and healthcare. Another over-arching theme is battery elimination even extending to woven supercapacitors or no storage at all. Throughout there are many ghost diagrams, photographs and infograms. It is based on 20 years of ongoing research by multilingual PhD level experts travelling, interviewing and benchmarking. The report's emphasis is on creating new business, including identification of gaps in the market. There is much on the new advanced materials needed, on harvester opportunies and new products benefitting society.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Primary conclusions: market and technology dynamics
    • 1.2.1. Market
  • 1.3. Primary conclusions: technology specifics
  • 1.4. Primary conclusions: Emerging industries
    • 1.4.1. Internet of Things and LPWAN potential
    • 1.4.2. Healthcare
    • 1.4.3. Military, industrial, automotive and aerospace
  • 1.5. Multimode harvesting, no battery
  • 1.6. Device power harvested and needed in device use with examples
  • 1.7. Power range needed
  • 1.8. Energy harvesting options to power electronic devices
  • 1.9. Most promising future applications by preferred technology
  • 1.10. Energy harvesting for electronics forecasts
    • 1.10.1. Summary and roadmap 2020-2040
    • 1.10.2. Photovoltaic energy harvesting for electronics: units, unit price, market value 2020-2040
    • 1.10.3. Thermoelectric energy harvesting for electronics: units, unit price, market value 2020-2040
    • 1.10.4. Piezoelectric energy harvesting for electronics: market units, unit price, market value 2020-2040
    • 1.10.5. Triboelectric transducer and self-powered sensors 2020-2040 $ million
    • 1.10.6. Electrodynamic energy harvesting for electronics: units, unit price, market value 2020-2040
    • 1.10.7. Forecast for pico products with integral harvesting
  • 1.11. Addressable end uses for energy harvesting for electronics
    • 1.11.1. Wearable technology
    • 1.11.2. Augmented reality AR / virtual reality VR
    • 1.11.3. Cardiac monitoring skin patches
    • 1.11.4. Skin patches for continuous diabetes management
    • 1.11.5. Medical motion sensing patches
    • 1.11.6. Haptics
    • 1.11.7. Mobile phones
    • 1.11.8. Battery assisted and active RFID
    • 1.11.9. Low power WAN connections 2020-2030
  • 1.12. Li-ion battery demand, GWh 2020-2030 and price trend

2. NEW MARKET TRENDS

  • 2.1. Overview
  • 2.2. Features of energy harvesting for electronic devices
  • 2.3. Energy harvesting system design
  • 2.4. Picogrids
  • 2.5. Pico products
  • 2.6. Power offered: technology choices for harvesting
  • 2.7. Move to flexible and multi-mode harvesters
  • 2.8. Trend to flexible energy harvesting and sensing
  • 2.9. Energy harvesting of motion: transducer options compared
    • 2.9.1. Vibration harvesting
    • 2.9.2. Harvesting for wearables and mobile phones
    • 2.9.3. Hug opportunities in IoT, LPWAN and allied areas
    • 2.9.4. EH developers should talk to these 21 LPWAN silicon manufacturers
    • 2.9.5. EH developers should talk to these 17 WPAN module and chipset makers

3. EMERGING PHOTOVOLTAIC TECHNOLOGY FOR ELECTRONICS

  • 3.1. Examples of photovoltaics in electronic devices
  • 3.2. PV mechanisms: status, benefits, challenges, market potential compared
  • 3.3. Wafer vs thin film photovoltaics 2020-2040
  • 3.4. Photovoltaic trends and priorities 2020-2040
  • 3.5. Single crystal scSi vs polycrystal pSi
  • 3.6. Amorphous silicon dead end
  • 3.7. Thin film more efficient than rigid silicon 2030-2040?
  • 3.8. Important PV options beyond silicon compared
  • 3.9. Production readiness of Si alternatives for mainstream electronics
  • 3.10. Best research-cell efficiencies 1975-2020
  • 3.11. Photovoltaic wild cards: 2D semiconductors, quantum dots, rectenna arrays

4. TRIBOELECTRIC HARVESTING TECHNOLOGY FOR ELECTRONICS

  • 4.1. Overview
  • 4.2. Basics
  • 4.3. Targeted applications
    • 4.3.1. Performance available matched to potential applications
    • 4.3.2. Some targeted medical applications
    • 4.3.3. Battery free electronics: toys, biosensors, wearables
    • 4.3.4. Transparent, stretchable: an example
    • 4.3.5. Wind, river or tidal generation for electronic devices
  • 4.4. Triboelectric dielectric series
  • 4.5. Materials opportunities
  • 4.6. Work combining TENG with other harvesting

5. THERMOELECTRIC AND PYROELECTRIC HARVESTING FOR ELECTRONICS

  • 5.1. Basics
    • 5.1.1. Thermoelectric generator design considerations
    • 5.1.2. Thermoelectric harvester improvement 2020-2040
    • 5.1.3. TEG layouts and materials
    • 5.1.4. TEG material choices and improvement roadmap
    • 5.1.5. Thin film thermoelectric generators
    • 5.1.6. TEG materials, processing and designs compared
  • 5.2. SOFT report on TE for electronics
  • 5.3. Examples of commercial and imminent applications
  • 5.4. Gentherm Global Power Technologies
  • 5.5. Marlow Industries
  • 5.6. Best in class: Matrix Industries
  • 5.7. Building & home automation: EnOcean
  • 5.8. KCF Technologies
  • 5.9. Automotive and IoT
  • 5.10. PowerPot™ Biolite ™ and Spark ™ charging personal electronics
  • 5.11. Other industrial, military
  • 5.12. Collaborations, mergers and exits
  • 5.13. Impactful new research
    • 5.13.1. Thermoelectric power generation at room temperature
    • 5.13.2. First stretchable thermoelectrics
    • 5.13.3. TEG power boost by mechanical shuttling
  • 5.14. Pyroelectric underwhelms

6. ELECTRODYNAMIC

  • 6.1. Basics
  • 6.2. EnOcean GmbH and EnOcean Alliance
  • 6.3. Seiko Kinetic electrodynamically harvesting watch
  • 6.4. Kinetron
  • 6.5. Kinetron micro turbines
  • 6.6. Harnessing linear movement
  • 6.7. Human movement harvesting
  • 6.8. Crank charged consumer electronics
  • 6.9. Travellers use wind, water
  • 6.10. 6D movement harvesting
  • 6.11. Witt Energy

7. PIEZOELECTRIC

  • 7.1. Basics
  • 7.2. Piezo harvester application by mode
  • 7.3. Manufacture: Typical processes
  • 7.4. Printed and flexible piezoelectric harvesters
  • 7.5. Gallium phosphate
  • 7.6. Collagen piezoelectric for disposables, implants, wearables
  • 7.7. MEMS
  • 7.8. Examples of MEMS harvesting
  • 7.9. Piezoelectric switches
  • 7.10. Applications and research
  • 7.11. Piezo harvesters for the human body
  • 7.12. Conformal piezoelectric harvesting for implants
  • 7.13. Inner ear
  • 7.14. Wrist health monitor
  • 7.15. Patient behaviour monitoring
  • 7.16. Automotive and aerospace
  • 7.17. Algra

8. MAN-MADE AMBIENT ELECTROMAGNETIC RADIATION, OTHER

  • 8.1. Electromagnetic radiation made for other purposes
  • 8.2. Power cable magnetic field
  • 8.3. Cellular transmissions
  • 8.4. Terahertz radiation
  • 8.5. Microbial fuel cells and other options