特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

デジタルヘルス・人工知能 (AI) 市場 - 動向、機会、見通し:2020年

Digital Health & Artificial Intelligence 2020: Trends, Opportunities, and Outlook

発行 IDTechEx Ltd. 商品コード 930808
出版日 ページ情報 英文 259 Slides
納期: 即日から翌営業日
価格
デジタルヘルス・人工知能 (AI) 市場 - 動向、機会、見通し:2020年 Digital Health & Artificial Intelligence 2020: Trends, Opportunities, and Outlook
出版日: 2020年03月24日 ページ情報: 英文 259 Slides
担当者のコメント
テレメディシンやテレヘルスは、医療システムのツールとして成長しています。当レポートではテレヘルス・テレメディシン、遠隔患者モニタリング、デジタル治療、診断におけるAI等について詳細に説明しております。
概要

デジタルヘルス・人工知能 (AI) は、医療の様相を変えてしまいます。デジタル医療分野への関心の高まりによって、過去数年間に大幅な投資の増加が行われました。製薬、MedTech (医療技術) 、健康保険、小売、技術業界の主要企業はすべて、投資と製品開発を促進しています。

デジタルヘルスは複雑な分野であり、その多くは従来の臨床現場以外での医療を可能にする技術やサービスで構成されています。デジタルヘルスは、病院や診療所の負担を軽減するための分散化という医療業界の世界的なトレンドを踏襲しています。医療費の増大、利益率の縮小、慢性疾患に苦しむ高齢化社会と相まって、デジタルヘルスは、患者、プロバイダー、支払者を含むこの分野のすべてのプレーヤーにこれらの問題の解決策を提供しています。実際、デジタルヘルスは、これまで医療分野に参入していなかった企業が多額の投資を行い、そのための動きをしているほど、魅力的で有利な機会を提供しています。

当レポートでは、デジタルヘルス・人工知能 (AI) 市場について調査分析し、概要、主要動向、機会、見通しについて、体系的な情報を提供しています。

目次

第1章 エグゼクティブサマリーと結論

第2章 イントロダクション

第3章 実現技術

  • デジタルヘルスの実現技術
  • IoT
  • 5G
  • 高品質のブロードバンドへのアクセス
  • 人工知能と機械学習
  • VR、AR、MR

第4章 規制とセキュリティ

  • デジタル vs. 従来型の医療
  • 医療機器経路
  • デジタル治療の規制
  • FDAの事前承認プログラム
  • Pre-Cert 1.0
  • デジタルツール、など

第5章 テレヘルス (遠隔医療)

  • テレヘルス (遠隔医療) の定義
  • 幅広いサービスを網羅
  • 多くの種類がある
  • 主要なサービスモデル
  • ユースケース
  • 利点
  • 課題、など

第6章 遠隔患者モニタリング

  • 遠隔患者モニタリング:測定とアプリケーション
  • リモート監視システムのコンポーネント
  • 医療の顔を変える
  • 病院・家庭
  • 家庭向けソリューション
  • オムロン、など

第7章 デジタル治療

  • デジタル治療:アプリベースの医療
  • デジタル治療 - mヘルスの次なるステップ?
  • 論理的根拠
  • 慢性疾患
  • トラッキングとモニタリングの順守
  • Proteus Digital Health、など

第8章 ケーススタディ:糖尿病管理

  • 糖尿病は早期導入
  • 糖尿病のコスト
  • 副作用の管理が糖尿病の総費用の90%を占める
  • 糖尿病管理デバイスロードマップ:概要
  • 大手企業の戦略比較
  • 血糖値測定器の新しい方向性:コネクティビティ、など

第9章 コンシューマー向け遺伝子検査

  • Central Dogma:DNA、RNA、タンパク質
  • DTC遺伝子検査とは?
  • 遺伝的変異:何の検査?
  • DTC遺伝子検査の台頭
  • ゲノム検査の収益化
  • ゲノミクス解析企業の出現、など

第10章 介護者としてのスマートホーム

  • 介護者としてのスマートホームは高齢化とともにますます重要に
  • スマートホームのセンサー:医療の分散化
  • センサーを取り付けることで医療を家庭に
  • 医療資産のトラッキング
  • 介護者エコシステムとしてのPhilipsのスマートホーム
  • 家庭での喘息治療、など

第11章 診断においてAIがどのように役立つか

目次

"Digital health and AI in healthcare driven by the exponential growth of health data generation."

Digital health and artificial intelligence (AI) promises to change the face of healthcare. Reflecting this is growing interest in the digital health space, as evidenced by a substantial growth in investment over the past few years. Major players from the pharmaceutical, medtech, health insurance, retail and technology industries are all forging ahead with investments and internal product development.

Digital health is a convoluted and complex field, much of which is made up of technologies and services that enable healthcare outside of traditional clinical settings. It follows a global trend in the healthcare industry of decentralization to alleviate overburdened hospitals and clinics. Coupled with escalating healthcare costs, shrinking profit margins and ageing populations suffering with chronic conditions, digital health offers a solution to these problems for all players in the space including patients, providers and payers. In fact, it presents such an alluring and lucrative opportunity that companies not previously in the healthcare space are making significant investments and moves to do so. Big tech companies such as Amazon, Apple, Alphabet and Microsoft have continued to make significant strides into the healthcare space since their announcements in January 2018.

The time is ripe for digital health due to the combination of a number of factors. These include changing population demographics, as well as current and upcoming changes to regulations and reimbursements which mean that the route to market and take-up of digital health services and technologies is more likely. Rising capabilities in artificial intelligence, connectivity and technologies such as continuous glucose monitoring enable new forms of health communication, patient treatment and monitoring, and streamlining of healthcare services.

Telemedicine, referring to the remote delivery of healthcare services using technology, is seeing rising demand. Benefits of telemedicine include increased convenience to patients, improved quality of care, improved outcomes, and cost savings. Telemedicine and remote patient monitoring technologies enable patients to leave the hospital earlier and to stay healthy at home for longer. On the other hand, physicians benefit from the broader use of technology in telehealth, including improved communication between practitioners, access to specialists, and even remote training.

By whichever name it comes under, whether that's digiceuticals, digital therapeutics or software-as-a-drug, this idea of software replacing drugs is a worry for large, established pharmaceutical companies. Coupled with the changing landscape of healthcare which is moving away from treating patients and towards a model of preventative care and a move from fee-based to value-based services, healthcare delivery is being disrupted and digital health threatens to cause even more turbulence.

Artificial intelligence (AI) is revolutionizing medical diagnostics. The state-of-the-art results have already demonstrated that software can achieve fast and accurate image-based diagnostics on various conditions affecting the skin, eye, hear, lung, breast, and so on. These technological advancements can help automate the diagnosis and triage processes, accelerating the process to speed up the referral process especially in urgent cases, freeing up expert resources, offering the best accuracy everywhere regardless of skill levels, and making the processes more widely available. This is a ground-breaking development with far-reaching consequences. Naturally, many innovators are scrambling to capitalize on these advancements.

This report outlines the state-of-the-art in AI-based diagnosis of various conditions affecting the skin, eye, heart, breast, brain, lung, blood, genetic disorder, and so. The data sources employed are diverse including dermoscopic images, fundus images, OCT, CT, CTA, echocardiograms, electrocardiogram , mammography, pathology slides, low-res mobile phone pictures, and so on. This report then identifies and highlights companies seeking to capitalize on these technology advances to automate the diagnostic and triage process.

This report provides a detailed overview of the digital health ecosystem including insights into the key trends, opportunities and outlooks for all aspects of digital health, including:

  • Telehealth and telemedicine
  • Remote patient monitoring
  • Digital therapeutics / digiceuticals / software as a medical device
  • Diabetes management
  • Consumer genetic testing
  • Smart home as a carer
  • AI in diagnostics

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY & CONCLUSIONS

  • 1.1. The Scope of Digital Health
  • 1.2. Changing Demographics Require Healthcare Reforms
  • 1.3. Factors Encouraging the Rise of Digital Health
  • 1.4. Enabling Technologies for Digital Health
  • 1.5. Effective Use of Resources Enabling Cost Efficiency
  • 1.6. The Future of Healthcare is Consumer-Led
  • 1.7. Big Tech Players are Moving into Healthcare
  • 1.8. Towards a Model of Value-Based Healthcare
  • 1.9. Big Pharma is Struggling, Disruption is Inevitable
  • 1.10. Consolidating and Collaborating to Survive and Thrive
  • 1.11. Regulation of Digital Health: Wanting the Best of Both Worlds
  • 1.12. Telehealth and Telemedicine are Poised for Take-Off
  • 1.13. The Future for Telehealth and Telemedicine
  • 1.14. Remote Patient Monitoring is Changing the Face of Healthcare
  • 1.15. The Outlook for Remote Patient Monitoring
  • 1.16. Digital Therapeutics - The Next Step for mHealth?
  • 1.17. The Outlook for Digital Therapeutics
  • 1.18. The Rise of Direct-to-Consumer Genetic Testing
  • 1.19. Sensors in Smart Homes: Decentralization of Healthcare
  • 1.20. Funding and IPOs
  • 1.21. Market Outlook: Wearable Medical Devices
  • 1.22. Outlook for Digital Health: Quality, Outcomes, and Value are Key

2. INTRODUCTION

  • 2.1. The Scope of Digital Health
  • 2.2. Digital Health Definitions
  • 2.3. Changing Demographics Require Healthcare Reforms
  • 2.4. Global Healthcare Spending is Rising
  • 2.5. Margins are Being Squeezed in Healthcare
  • 2.6. Trouble for Traditional Healthcare?
  • 2.7. Mergers and Acquisitions: Vertical Integration
  • 2.8. Big Tech Players are Moving into Healthcare
  • 2.9. Apple - 2018 Update
  • 2.10. Apple - 2019 Update
  • 2.11. Amazon
  • 2.12. Amazon - Alexa
  • 2.13. Alphabet
  • 2.14. Microsoft
  • 2.15. Tencent
  • 2.16. From Fee-for-Service to Value-Based Purchasing
  • 2.17. Towards a Model of Value-Based Healthcare
  • 2.18. Big Pharma is Struggling
  • 2.19. Digital Disruptors & Big Pharma: A Match Made in Heaven?
  • 2.20. Big Pharma: Competitions and Digital Hubs
  • 2.21. The Future for Pharma
  • 2.22. Rising Role of Venture Capital
  • 2.23. Funding and IPOs
  • 2.24. Mobile Health is Becoming the Norm
  • 2.25. Apple Enters the Electronic Health Record Market
  • 2.26. The Future of Healthcare is Consumer-Led
  • 2.27. Apps are Moving Towards Voice
  • 2.28. A Move to Precision/Personalized Medicine
  • 2.29. Biosensors are Moving to the Point-of-Care
  • 2.30. Consumer-Driven, Patient Centered Healthcare
  • 2.31. Global Challenges in Implementing Digital Health
  • 2.32. The P4 Healthcare Model
  • 2.33. The Emergence of a P4 Healthcare System
  • 2.34. Wellness and Prevention
  • 2.35. Market Outlook: Wearable Medical Devices

3. ENABLING TECHNOLOGIES

  • 3.1. Enabling Technologies for Digital Health
  • 3.2. IoT
  • 3.3. 5G
  • 3.4. Access to High Quality Broadband
  • 3.5. Artificial Intelligence and Machine Learning
  • 3.6. VR, AR and MR

4. REGULATIONS AND SECURITY

  • 4.1. Digital vs Traditional Healthcare
  • 4.2. Medical Device Pathways
  • 4.3. Regulation of Digital Therapeutics
  • 4.4. FDA Pre-Cert Program
  • 4.5. Pre-Cert 1.0
  • 4.6. Digital Tools Not Under FDA Review
  • 4.7. Regulation of Direct-to-Consumer Genetic Testing
  • 4.8. Genetic Data, Privacy Concerns and a Lack of Trust
  • 4.9. Unanswered questions about device security
  • 4.10. Security Risks for Medical Devices
  • 4.11. The Security of Data is a Critical Issue
  • 4.12. National Systems at Risk of Large-Scale Cyber Attacks

5. TELEHEALTH & TELEMEDICINE

  • 5.1. Defining Telehealth and Telemedicine
  • 5.2. Telehealth Encompasses a Range of Services
  • 5.3. There are Numerous Types of Telemedicine
  • 5.4. The Key Services Models for Telehealth
  • 5.5. Use Cases for Telehealth and Telemedicine
  • 5.6. Benefits of Telehealth and Telemedicine
  • 5.7. Challenges in Telehealth and Telemedicine
  • 5.8. Is Telehealth a Cost-Effective Solution?
  • 5.9. Telehealth and Telemedicine are Poised for Take-Off
  • 5.10. The Growing Network of Care
  • 5.11. Doctors Require Better Ways of Communication
  • 5.12. Nomadeec
  • 5.13. Smartphones Become the Tool for Doctors
  • 5.14. Driving the Uptake of Telemedicine
  • 5.15. Changes to Reimbursement of Telehealth
  • 5.16. Reimbursement of Remote Patient Monitoring
  • 5.17. Room to Improve and Mature
  • 5.18. The Next-Generation of Telemedicine
  • 5.19. Can AI Replace Your Doctor?
  • 5.20. Babylon Health
  • 5.21. TytoCare
  • 5.22. American Well
  • 5.23. Key American Well Partnerships
  • 5.24. The Future for Telehealth and Telemedicine
  • 5.25. The Future for Telehealth and Telemedicine (cont.)

6. REMOTE PATIENT MONITORING

  • 6.1. Remote Patient Monitoring: Measurements and Applications
  • 6.2. Components of a Remote Monitoring System
  • 6.3. Remote Patient Monitoring is Changing the Face of Healthcare
  • 6.4. Remote Patient Monitoring in Hospitals and the Home
  • 6.5. Remote Patient Monitoring Solutions in the Home
  • 6.6. Omron
  • 6.7. Owlet
  • 6.8. toSense
  • 6.9. Biotricity
  • 6.10. Sony
  • 6.11. Remote Patient Monitoring Solutions in Hospitals
  • 6.12. Evolution of the Stethoscope into the Digital Realm
  • 6.13. Digital Stethoscopes Enable Decentralized Healthcare
  • 6.14. The Benefits of Remote Patient Monitoring for Payers
  • 6.15. UnitedHealthcare Motion: US
  • 6.16. Momentum Multiple: South Africa
  • 6.17. Vitality: UK
  • 6.18. Vitality and Apple Watch
  • 6.19. Fitbit
  • 6.20. Elder Care
  • 6.21. Elder Care: Fall Detection
  • 6.22. Elder Care: Medical Adherence
  • 6.23. Is Remote Patient Monitoring Really Helpful?
  • 6.24. Skin Patches Emerging as a Key Form Factor
  • 6.25. Contactless/Invisible RPM
  • 6.26. Xandar Kardian
  • 6.27. The Outlook for Remote Patient Monitoring

7. DIGITAL THERAPEUTICS

  • 7.1. Digital Therapeutics: App-Based Healthcare
  • 7.2. Digital Therapeutics - The Next Step for mHealth?
  • 7.3. The Rationale Behind Digital Therapeutics (DTx)
  • 7.4. Digital Therapeutics for Chronic Conditions Poised for Success
  • 7.5. Tracking and Monitoring Adherence
  • 7.6. Proteus Digital Health
  • 7.7. Propeller Health
  • 7.8. Mental Health is a Key Focus for DTx
  • 7.9. Pear Therapeutics
  • 7.10. Carrot
  • 7.11. Akili Interactive
  • 7.12. Insurers are Investing in Digital Therapeutics
  • 7.13. Difficulties in Realising the Potential of Digital Therapeutics
  • 7.14. Digital Therapeutics Alliance
  • 7.15. Diabetes Partnerships are Proliferating
  • 7.16. The Outlook for Digital Therapeutics

8. CASE STUDY: DIABETES MANAGEMENT

  • 8.1. Diabetes is an Early Adopter of Digital Healthcare Initiatives
  • 8.2. The cost of diabetes
  • 8.3. Managing side effects accounts for 90% of the total cost of diabetes
  • 8.4. Diabetes management device roadmap: Summary
  • 8.5. Strategy comparison amongst the largest players
  • 8.6. New directions with glucometers: Connectivity
  • 8.7. The case for CGM
  • 8.8. CGM: Overview of key players
  • 8.9. Skin patches are the form factor of choice
  • 8.10. Smarter insulin delivery informing decisions
  • 8.11. Smart Pen Platform Preventing Missed Doses
  • 8.12. Smart insulin delivery device manufacturers
  • 8.13. Diabetes apps
  • 8.14. Growing ecosystem via acquisitions and partnerships
  • 8.15. Roche & mySugr
  • 8.16. Lilly & Rimidi, Lilly & Livongo
  • 8.17. Blue Mesa Health & Merck
  • 8.18. Glooko-Novo Nordisk in Diabetes Care
  • 8.19. Other case studies: Digital diabetes management
  • 8.20. BlueStar
  • 8.21. Voluntis
  • 8.22. DIABNEXT
  • 8.23. Better Therapeutics

9. CONSUMER GENETIC TESTING

  • 9.1. The Central Dogma: DNA, RNA and Proteins
  • 9.2. What is Direct-to-Consumer Genetic Testing?
  • 9.3. Genetic Variations: What Are We Testing For?
  • 9.4. The Rise of Direct-to-Consumer Genetic Testing
  • 9.5. Monetizing Genomic Testing
  • 9.6. The Emergence of Genomics Analysis Companies
  • 9.7. Not All Data is Created Equal
  • 9.8. AI Driven Genomics and Drug Development
  • 9.9. Alexa-Powered AI Genomics Platform
  • 9.10. Using Genomics to Diagnose NHS Patients
  • 9.11. AncestryDNA
  • 9.12. 23andme
  • 9.13. Foundation Medicine
  • 9.14. Atlas Biomed Group
  • 9.15. Orig3n

10. SMART HOME AS A CARER

  • 10.1. Smart Home as a Carer Becomes Increasingly Important with Ageing Populations
  • 10.2. Sensors in Smart Homes: Decentralization of Healthcare
  • 10.3. Bringing Healthcare into the Home by Fitting Sensors
  • 10.4. Medical Asset Tracking Allows for More Productive Refilling of Medicines and Vital Equipment in the Home
  • 10.5. Philips Smart Home as a Carer Ecosystem is Able to Alert Carers in Case of an Emergency
  • 10.6. Home Asthma Care
  • 10.7. Dr Alexa
  • 10.8. Health Information at Home Through Voice Technology
  • 10.9. Digital Health Apps Using Amazon Alexa
  • 10.10. 3rings
  • 10.11. Artificial intelligence in health care diagnostics: state-of-the-art and competitive landscape
  • 10.12. The rise of biomedical data
  • 10.13. Measures in deep learning(1): sensitivity and specificity
  • 10.14. Measures in deep learning(2): Area Under Curve (AUC) or area under curve of receiver operating characteristics (AUCROC).
  • 10.15. Measures in deep learning(3): Reproducibility
  • 10.16. F1-Score
  • 10.17. When AUC is not a good measure of the algorithm success?

11. HOW AI HAS HELPED IN DIAGNOSTICS

  • 11.1. 1) Skin disease: Dermoscopic melanoma recognition (2018)
  • 11.2. Dermoscopic melanoma recognition and its challenges
  • 11.3. SkinVision: a Netherland based firm to understand risk factors for skin cancer
  • 11.4. Haut AI: Using machine learning to predict effect of everything in lifestyle on skin health
  • 11.5. 2) Diagnosing diabetic retinopathy and diabetic macular edema from fundus photographs (2019)
  • 11.6. Diabetic retinopathy: features of severity and learning structure
  • 11.7. IDx: A company with $50M of funding with AI based diabetic retinopathy as the first focus
  • 11.8. 3) Google DeepMind's AI can detect over 50 sight-threatening eye conditions (2018)
  • 11.9. DeepMind: automating triage based on OCT images
  • 11.10. DeepMind: automating triage based on OCT images
  • 11.11. DeepMind: Deep learning-based mind that knows about eye diseases
  • 11.12. 4) Coronary Heart disease diagnosis (2018)
  • 11.13. 5) Determination of ejection fraction from echocardiograms (2019)
  • 11.14. Left ventricular ejection fraction assessment by deep learning procedure
  • 11.15. Caption health (Bay Labs): Deep learning on echo cardiogram creation and interpretation
  • 11.16. 6) Detection and quantification of breast densities via mammography (2018)
  • 11.17. Breast cancer screening via mammograms and pathology slides
  • 11.18. Reproducible breast cancer screening: Densitas, Kheiron Medical, and Therapixel
  • 11.19. 7) Detection of stroke, brain bleeds, and other conditions from computerized axial tomography (2018)
  • 11.20. Deep learning facilitates finding the rout cause of intracranial hemorrhage
  • 11.21. Viz ai: Brain scan deep-learning-based analysis (a physician diagnostic assistant)
  • 11.22. Brainomix: Brain imaging interpretation using deep learning
  • 11.23. 8) Deep learning of lung cancer histopathological images is able to identify cancer cells, determine their type, and predict what somatic mutations are present in the tumor (2018)
  • 11.24. Lung cancer detection made easier
  • 11.25. Optellum: early lung cancer detection
  • 11.26. 9) Facial image recognition to identify rare genetic disorders and to guide molecular diagnoses (2019)
  • 11.27. Facial image and genetic disorder: FDNA approach vs NIH (US national institute of health) approach
  • 11.28. 10) AI based time series analysis: AI applied to electrocardiograms can detect and classify arrhythmias (2019)
  • 11.29. Cardiologist-Level Arrhythmia Detection by applying AI electrocardiograms: Stanford machine learning group (2017)
  • 11.30. 11) AI based time series analysis: Detect atrial fibrillation (2018)
  • 11.31. Current health (Snap40): a band for determining who is in health risk...how does this fit?
  • 11.32. Cardiogram: accurately detecting various heart conditions with wearables
  • 11.33. 12) AI based time series analysis: Detect cardiac contractile dysfunction(2019)
  • 11.34. 12) AI based time series analysis: Detect blood chemistries linked to cardiac rhythm abnormalities
  • 11.35. Cardiologs : A French based start up to help recognize abnormal heart conditions through deep learning
  • 11.36. 14) AI based time series analysis: Detecting functional DNA sequence elements that are indicative of gene splicing (2014)
  • 11.37. Deep genomics: Cell biology manipulation as intended, powered by AI
  • 11.38. Electronic health records
  • 11.39. Natural language processing to facilitate useful healthcare record taking and big data interpretation
  • 11.40. Ubiquity of Electronic Health Records (EHRs) and learning from them
  • 11.41. Information extraction from EHRs and EHR representation learning
  • 11.42. Outcome Prediction, Computational Phenotyping, and Clinical Data De-identification from EHRs by deep learning