特集: 調査項目の変更・追加が可能なセミカスタムオーダー型の調査レポート(Lucintel社)はこちら

特集 : 国別の市場調査レポートをお探しの方はこちら

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ゼロエミッション電気自動車の充電:オフグリッド (2020-2040年)

Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040

発行 IDTechEx Ltd. 商品コード 929393
出版日 ページ情報 英文 236 Slides
納期: 即日から翌営業日
価格
ゼロエミッション電気自動車の充電:オフグリッド (2020-2040年) Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040
出版日: 2020年03月24日 ページ情報: 英文 236 Slides
概要

当レポートでは、電気自動車充電におけるオフグリッドゼロエミッション (OGZE) の機会について調査し、EV充電のための光起電技術・フォーマット、CIGS (銅インジウムガリウムジセレニド) PVによる車両充電、ソーラーロード、可搬型の風力・河川・海洋発電、内蔵型マイクログリッドなど、様々な技術について考察しています。

第1章 エグゼクティブサマリー・結論

第2章 イントロダクション

第3章 EV充電のための光起電技術・フォーマット

  • これらの提供において求められるメリットおよびリーダー
  • 太陽光発電の動向・プライオリティ
  • ウェーハーまたは薄膜PV
  • 薄膜の方が硬質シリコンよりも効率的か?
  • 5つの基本的なPVメカニズム:ステータス、メリット、課題、市場の可能性
  • シリコンを凌ぐ重要なPVオプションの比較
  • 主流の車両充電用のSi代替品の生産準備
  • 電池効率の調査
  • フォーマットの選択
  • フォーマットの例
  • フレキシブル薄膜バージョンは徐々にシェアを獲得

第4章 銅インジウムガリウムジセレニドが重要に

  • 概要
  • 超軽量フレキシブルCIGS
  • 4ヶ国において、CIGS PVが車両を充電
  • ハリケーン耐性モバイルマイクログリッド
  • Renovagen社のマイクログリッド展開
  • CIGSの建物ファサード

第5章 ワイルドカード:2D半導体、量子ドット、レクテナアレイ

  • 2D半導体ナノマテリアル
  • 量子ドット
  • レクテナナンテナダイオード

第6章 新しいフォーマット:コンクリート、ソーラーロードおよび窓

  • 薄型コンクリートソーラー:ETHチューリッヒ
  • ソーラーロードがEVを充電
  • マルチモードロードおよびその他の構造物
  • ガントリー vs 路面PV
  • 透明・半透明PV
  • ソーラーウィンドウ

第7章 EV充電のための新しい可搬型の風力・河川・海洋発電

  • ゼロエミッションマイクログリッド:太陽光、水力、風力の再発明
  • 太陽光を上回る新たな選択肢:可搬型、断続的ではない
  • 「潮流」電力オプションは風力発電オプションに倣う
  • 空中風力エネルギーのディベロッパー
  • 外洋波力発電技術

第8章 EVを充電する内蔵型マイクログリッド

  • 軍事、ライブイベント、より簡単な設置のための可搬型マイクログリッド
  • マイクログリッドのスケール
  • VERGEと多くの太陽光発電
  • Excellerate
  • OffGridBox

第9章 風力・太陽光を使用したZE (ゼロエミッション) マイクログリッド

  • 概要
  • 悪い例
  • 良い例:ポルトサント島ポルトガル
  • ボルクム島:ドイツ
  • コディアック島:アラスカ
  • キングアイランド:タスマニア
  • eVcentres :英国
  • SmartGreenCharge Highways:フランス
  • PEARL Project:ハワイ
  • Tesla
  • その他のプロジェクト
  • 車輪上のI-FEVSレストラン
  • 風力および太陽光発電船
  • エネルギーに依存しない電気船の機会

第10章 車両の充電に適したその他のZE OGマイクログリッド

  • 農業
  • Brightfield:米国
  • Roadside:テキサス
  • 可搬型:フランス
  • HEP:クロアチア
  • e-move:デンマーク
  • Power Research Electronics:オランダ
  • Ovida Community Hubs :メルボルン
  • Saudi Aramco の駐車場および電気自動車充電シェルター
  • アイオワ大学:米国
  • マイクログリッドとしてのプライベートハウス

第11章 太陽電池自動車が主流に:陸上、水、空気

  • 概要
  • 電動ロボット除草機:FarmWise、Naioなど
  • Hyundai・ Kia
  • Tesla solar Cybertruck
  • Sono Motors, Lightyear
  • Squad - solar city car ソーラーシティカー
  • Sunnyclist Greece :ギリシャ
  • Neerajおよび他のソーラー人力車:インド
  • K-Bus:ドイツ、ほか

第12章 エネルギーポジティブZEマイクログリッドおよび燃料サプライチェーンチェーン不要のZE燃料電池車

目次

Title:
Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040
Microgrid and on-board charging: land, water, air.

"A $15 billion business is emerging for zero-emission, off-grid charging stations for all EVs."

The new IDTechEx report, "Zero-Emission Electric Vehicle Charging: Off-Grid 2020-2040" examines how the electric vehicle business is finding it profitable to respond to criticism that clean vehicles should not be charged with fossil fuel electricity. The purpose of this 230 page report is to enable materials, component, vehicle and infrastructure suppliers and putative suppliers and all others in the value chain to understand this large emerging opportunity for off-grid zero-emission OGZE charging of electric vehicles land, water and airborne.

That is starting to take two basic forms. First is ZE microgrids that are off-grid or capable of being islanded (using the grid as backup called "fringe-of-grid") that charge vehicles - eventually $15 billion in yearly sales on IDTechEx analysis. Second is land and marine vehicles and aircraft progressing to being energy-independent pure-electric vehicles EIEV, another large emerging market. Some readers need a very long-term view so we look at 2020-2040. The methodology of the new research covering over 100 organisations consists mainly of ongoing global visits and interviews by our multi-lingual, PhD level analysts, use of privileged databases including presentations at our own events on the subject. IDTechEx is an independent analyst company located worldwide and with no conflicts of interest.

The executive summary and conclusions presents easily understood, new infograms and graphs revealing off-grid technology options, underlying needs and trends 2020-2040 and which types of EV are suited to OGZE and therefore the primary focus of the report. Learn the types of location matched to the best solutions. Primary conclusions are given for format, chemistry, physics, technology popularity, strategy of photovoltaic leaders, 13 new formats and power electronics 2020-2040. Learn the place of DC microgrids, existing microgrid cost breakdown and action arising. All of this is brought alive by examples of best practice and, given the large off-road opportunity in seven identified industries, the farm, construction site and mine of the future are drawn. Leading solar vehicles are compared and trends explained. Technology roadmap, OGZE charger-microgrid business and solar car business are forecasted 2020-2040.

The introduction covers microgrid design from in-a-box to distributed microgrids and why solar usually wins for vehicle charging stations but new options are added. Understand new wind power and energy independent vehicles. Photovoltaic technologies 2020-2040 are compared in Chapter 3 with silicon winning, single crystal gaining share and identified market niches for other options. Chapter 4 explains why copper indium gallium diselenide is carving one of the largest niches for vehicle charging. Chapter 5 addresses wild cards: 2D semiconductors, quantum dots, rectenna arrays. Chapter 6 closely examines where new PV formats such as thin concrete, solar roads and windows are headed, profiling 15 activities.

Ocean wave power and tidal power in river or sea is now modular and very useful for charging boats, ships, sea-floor mining vehicles and other vehicles near or under the sea so Chapter 7 thoroughly explores this and the progress with tethered drones making electricity with many examples and predictions.

Chapter 8 explains the many containerised microgrids charging EVs. Chapter 9 critically presents examples of ZE microgrids using wind and solar. Chapter 10 does the same for other ZE OG microgrids suitable for vehicle charging then Chapter 11 explains why solar vehicles have become mainstream: land, water, air with examples. The report ends with Chapter 12, "Energy positive ZE and ZE fuel cell vehicles without fuel supply chain".

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Comparison of off-grid technology options
  • 1.3. New power generating technology kVA comparison
  • 1.4. Much more than a story about cleaner chargers
  • 1.5. Primary conclusions: Underlying needs and trends 2020-2040
  • 1.6. Primary conclusions: making the electricity
  • 1.7. Why zero-emission?
  • 1.8. Primary conclusions: off-grid charging by type of location
  • 1.9. Primary conclusions: basic technological options
  • 1.10. Primary conclusions: format, chemistry, physics 2020-2040
  • 1.11. Technology popularity 2020-2040
  • 1.12. Preferred solar technologies for microgrids and vehicles
  • 1.13. Where the PV leaders are headed
  • 1.14. Best practice: Gridserve solar/ battery forecourts UK
  • 1.15. New high power photovoltaic formats
    • 1.15.1. Best practice: EV ARC solar tracking car charger
  • 1.16. Wind power for vehicle charging
  • 1.17. Advanced power electronics becomes important
  • 1.18. DC microgrids slowly coming in
  • 1.19. Primary conclusions: cost breakdown and action arising
  • 1.20. Construction site of the future arriving now with moveable zero emission gensets
  • 1.21. Farm of the future arriving now
  • 1.22. Self-powered, robotic indoor farming
  • 1.23. Mine of the future
  • 1.24. Primary conclusions: solar vehicles are microgrids on wheels
  • 1.25. Market forecasts and technology roadmap 2020-2040
    • 1.25.1. Global charging infrastructure 2020: on-road vehicles
    • 1.25.2. Existing charging stations that could go zero-emission off-grid
    • 1.25.3. Technology and rollout roadmap 2020-2040
    • 1.25.4. OG ZE charging stations number, unit value, market value 2020-2040
    • 1.25.5. Background information: global microgrid market
    • 1.25.6. Solar cars number, unit value, market value 2019-2030
    • 1.25.7. Electric vehicle forecast 2020-2030 number k for 103 categories

2. INTRODUCTION

  • 2.1. Increased versatility but winners and losers
  • 2.2. Microgrid design
    • 2.2.1. Basic configurations and V2G
  • 2.3. Why solar usually wins for vehicle charging stations
  • 2.4. Decentralised microgrids
  • 2.5. Below 100kW wind turbines have become niche
  • 2.6. Wind turbine choices
  • 2.7. Electric vehicle powertrains

3. PHOTOVOLTAIC TECHNOLOGY AND FORMATS FOR CHARGING EVS 2020-2040

  • 3.1. Benefits sought and leaders in providing them
  • 3.2. Photovoltaic trends and priorities 2020-2040
    • 3.2.1. Silicon the winner so far: variants and successes
  • 3.3. Wafer or thin film PV 2020-2040
  • 3.4. Thin film more efficient than rigid silicon 2030-2040?
  • 3.5. Five basic PV mechanisms: status, benefits, challenges, market potential
  • 3.6. Important PV options beyond silicon compared
  • 3.7. Production readiness of Si alternatives for mainstream vehicle charging
  • 3.8. Best research-cell efficiencies 1975-2020
  • 3.9. Choice of format
  • 3.10. Examples of formats
  • 3.11. Flexible thin film versions slowly gain share

4. COPPER INDIUM GALLIUM DISELENIDE BECOMES IMPORTANT

  • 4.1. Overview
  • 4.2. Ultra-light flexible CIGS
  • 4.3. CIGS PV in action charging vehicles in four countries
  • 4.4. Hurricane proof mobile microgrid MIT USA in Puerto Rico
  • 4.5. Renovagen microgrid unrolls
  • 4.6. CIGS building facades

5. WILD CARDS: 2D SEMICONDUCTORS, QUANTUM DOTS, RECTENNA ARRAYS

  • 5.1. 2D semiconductor nanomaterials
  • 5.2. Quantum dot
  • 5.3. Rectenna nantenna-diode

6. NEW FORMATS: CONCRETE, SOLAR ROADS AND WINDOWS

  • 6.1. Thin concrete solar: ETH Zurich
  • 6.2. Solar roads charge EVs
    • 6.2.1. Pavenergy China
    • 6.2.2. The Netherlands introduces SolaRoad paving - March 2019
  • 6.3. Multi-mode roads and other structures
    • 6.3.1. Solar Roadways USA
  • 6.4. Gantry vs road surface PV
  • 6.5. Transparent and translucent PV
  • 6.6. Solar windows
    • 6.6.1. Basic configurations
    • 6.6.2. Review of 13 organisations
    • 6.7. SolarGaps solar blinds

7. NEW RELOCATABLE WIND, RIVER AND SEA POWER FOR CHARGING EVS

  • 7.1. Zero emission microgrids: solar, water, wind reinvented
  • 7.2. New options beyond solar: relocatable, much less intermittent
  • 7.3. Open tide "tide stream" power options mimic wind power options
  • 7.4. Airborne Wind Energy developers
    • 7.4.1. Why AWE may be better than a conventional wind turbine
    • 7.4.2. eWind Solutions specifically targets AWE for farms
  • 7.5. Open sea wave power technologies

8. CONTAINERISED MICROGRIDS CHARGING EVS

  • 8.1. Transportable microgrids for military, live events, easier installations
  • 8.2. Scale Microgrid
  • 8.3. VERGE and many with expanding solar
  • 8.4. Excellerate
  • 8.5. OffGridBox

9. ZE MICROGRIDS USING WIND AND SOLAR

  • 9.1. Overview
  • 9.2. Bad practice
  • 9.3. Good practice: Porto Santo Island Portugal
  • 9.4. Borkum Island Germany
  • 9.5. Kodiak Island Alaska
  • 9.6. King Island Tasmania
  • 9.7. eVcentres UK
  • 9.8. SmartGreenCharge Highways France
  • 9.9. PEARL Project Hawaii
  • 9.10. Tesla
    • 9.10.1. Tesla Semi: off grid charging vital for payback
    • 9.10.2. Tesla car charging
  • 9.11. Other projects
  • 9.12. I-FEVS restaurant on wheels
  • 9.13. Wind and solar powered ships
  • 9.14. Energy independent electric ship opportunity

10. OTHER ZE OG MICROGRIDS SUITABLE FOR VEHICLE CHARGING

  • 10.1. Agriculture
    • 10.1.1. Stone Edge Farm microgrid development
    • 10.1.2. Charging electric farm tractors
    • 10.1.3. Solectrac electric tractor charging
  • 10.2. Brightfield USA
  • 10.3. Roadside Texas
  • 10.4. France - transportable versions
  • 10.5. HEP Croatia
  • 10.6. e-move Denmark
  • 10.7. Power Research Electronics Netherlands
  • 10.8. Ovida Community Hubs Melbourne
  • 10.9. Saudi Aramco car parks and electric vehicle charging shelters
  • 10.10. University of Iowa USA
  • 10.11. Private houses as microgrids
    • 10.11.1. Tesla

11. SOLAR VEHICLES GO MAINSTREAM: LAND, WATER, AIR

  • 11.1. Overview
  • 11.2. Electric robot weeders: FarmWise, Naio etc.
  • 11.3. Hyundai and Kia
  • 11.4. Tesla solar Cybertruck
  • 11.5. Sono Motors, Lightyear
  • 11.6. Squad - solar city car
  • 11.7. Sunnyclist Greece
  • 11.8. Neeraj and other solar rickshaws India
  • 11.9. K-Bus Germany
  • 11.10. BYD and others
  • 11.11. Kim il-sung University North Korea
  • 11.12. Solar-powered vehicle to South Pole
  • 11.13. Green Energy Norway
  • 11.14. Detleffs USA
  • 11.15. Midsummer Sweden
  • 11.16. Fraunhofer ISE Germany
  • 11.17. Energy Independent Electric Vehicles
  • 11.18. Technology timeline for solar cars

12. ENERGY POSITIVE ZE MICROGRIDS AND ZE FUEL CELL VEHICLES WITHOUT FUEL SUPPLY CHAIN

  • 12.1. Overview and Powerhouse Brattørkaia
  • 12.2. One microgrid charging buses, cars and boats
  • 12.3. Energy positive vehicles
  • 12.4. Stella Vie and Stella Era
  • 12.5. Fuel cell vehicles without the crippling supply chain