特集: 調査項目の変更・追加が可能なセミカスタムオーダー型の調査レポート(Lucintel社)はこちら

特集 : 国別の市場調査レポートをお探しの方はこちら

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ロボット手術におけるイノベーション (2020-2030年) :技術・企業・市場

Innovations in Robotic Surgery 2020-2030: Technologies, Players & Markets

発行 IDTechEx Ltd. 商品コード 929308
出版日 ページ情報 英文 216 Slides
納期: 即日から翌営業日
価格
ロボット手術におけるイノベーション (2020-2030年) :技術・企業・市場 Innovations in Robotic Surgery 2020-2030: Technologies, Players & Markets
出版日: 2020年03月23日 ページ情報: 英文 216 Slides
担当者のコメント
昨今手術分野で注目を集める「ロボット手術」に着目した市場レポートが、Advanced Technologiesの市場分析に精通した英国の調査会社IDTechEx Ltd.からリリースされました。各製品と特性、主要プレーヤーの販売台数や市場成長の予想などカバーしており、精密作業を可能にする最新ロボットの技術トレンド、市場動向を把握する多くの顧客ニーズがあり非常に問い合わせの多いレポートです。オンラインで原本のご案内が可能ですのでお問い合わせください。
概要

ロボット手術市場は、2030年までに120億米ドルを上回ると予測されています。

当レポートでは、世界のロボット手術市場について調査し、4つの主要区分別 (ロボットによる一般外科、ロボットによるカテーテル・内視鏡ナビゲーション、ロボットによる外科手術ツールのポジショニング、ロボットによるカテーテル・内視鏡ナビゲーション) による市場分析を提供しており、新興技術の調査、主要企業、および市場予測などをまとめています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 ロボットによる一般外科

  • ロボット一般外科の仕組みとは?
  • フレキシブルロボットエンドエフェクター
  • 一般外科ロボットが実施する手術の種類
  • ロボット一般外科企業への投資
  • Intuitive Surgical :ロボット手術のパイオニア
  • Intuitive Surgical :主要データ
  • ダ・ヴィンチ外科手術システム
  • ダ・ヴィンチの承認手続き
  • ロボット手術トレーニングの仮想シミュレーション
  • ダ・ヴィンチの競合相手の登場
  • ダ・ヴィンチのアプローチに従う
  • 例:TransEnterix
  • 例:Avatera
  • 例:CMR Surgical
  • 例:Titan Medical
  • 例:Medtronic
  • フレキシブルアーム
  • 例:Medrobotics
  • 例:韓国科学技術院(KAIST)
  • 手術用ウェアラブルロボットツール
  • 手術ロボットの小型化
  • 例:Virtual Incision
  • 例:香港工科大学
  • 例:Microsure
  • 従来の手術とロボット一般外科手術の組み合わせ
  • 例:Galen Robotics
  • 例:Distalmotion
  • 例:Preceyes
  • コンピュータ支援手術の代替手段としての手動、機械器具
  • 例:FlexDex Surgical
  • 例:Human Xtensions
  • ロボット一般外科手術システムの開発状況
  • サマリー・展望

第4章 ロボットによるカテーテル・内視鏡ナビゲーション

  • カテーテルおよび内視鏡とは?
  • 医療機器のロボットによるナビゲーション
  • ロボットナビゲーションシステムの利点
  • インターベンションの種類
  • ワイヤーの仕組みとは?
  • ロボットカテーテルナビゲーション企業への投資
  • 主要企業
  • Intuitive Surgical
  • 例:Auris Health
  • Corindus Vascular Robotics
  • Robocath
  • Moray Medical
  • 自律アクティブステアリング:Fraunhofer IPA
  • 自律アクティブステアリング:ハーバード大学医学部
  • 磁気ステアリング
  • 磁気ステアリング:定位
  • 磁気ステアリング:マサチューセッツ工科大学
  • 磁気ステアリング:モントリオール理工科大学
  • ロボットカテーテルナビゲーションシステムの開発状況
  • サマリー・展望

第5章 ロボットによる外科手術ツールのポジショニング

  • ロボットによるガイダンスとポジショニング
  • ロボット機器ポジショニング企業への投資
  • 市場・主要企業
  • ロボット整形外科
  • ロボット整形外科システムの主要コンポーネント
  • 手術計画向け術前ソフトウェア
  • 器具を保持するロボットアーム
  • リアルタイム機器追跡用の3Dカメラ
  • 例: Stryker
  • 例: Medtronic
  • 例: Zimmer Biomet
  • 例: Smith & Nephew
  • 例: Brainlab
  • 例: Orthotaxy
  • 例: Globus Medical
  • 例: Curexo
  • 例: Eindhoven Medical Robotics
  • ロボット整形外科システムの比較
  • 大手整形外科企業が手術用ロボットを買収しようとする理由とは?
  • ロボット脳神経外科 Example: Renishaw
  • 例: Kuka Robotics
  • 例: AiM Medical Robotics
  • Robotic positioning for laser therapy
  • 例: Kuka Robotics
  • 例: Zeiss VisuMax
  • ロボット生検
  • 例: XACT
  • 例: Machnet Medical Robotics
  • ロボット手術器具位置決めシステムの開発状況
  • サマリー・展望

第6章 術中カメラ操作向けロボットシステム

  • ロボット術中カメラ操作
  • 術中カメラ操作ロボットを開発している企業への投資
  • ロボット腹腔鏡ホルダー
  • 例: AKTORmed
  • 例: OR Productivity
  • 例: Storz
  • ロボット術中イメージング・顕微鏡検査
  • 例: Brainlab
  • Example : Zeiss
  • 例: Synaptive Medical
  • ロボット術中カメラ操作システムの開発状況
  • サマリー・展望

第7章 ロボット手術システムにおける人工知能

  • 用語の説明
  • AIは人間とロボットの相互作用を可能に
  • AIは画像誘導ロボット手術を容易に
  • 術前計画にAIを使用する際の課題
  • AI駆動ロボット機器のポジショニング課題
  • ロボット手術におけるAI:法規制状況

第8章 ロボット手術システムにおける触覚フィードバックのメカニズム

  • 外科医は彼らがしていることを「感知」しなければならない
  • ロボット手術における触覚
  • 触覚/ハプティクスはロボット手術システムを強化
  • 触覚フィードバックメカニズムのコンポーネント
  • 触覚フィードバックはどのようにして達成されるか?
  • どのような種類のセンサーが使用されているか?
  • 触覚メカニズム:ロボット手術の課題

第9章 市場分析

第10章 結論

第11章 企業プロファイル

目次

Title:
Innovations in Robotic Surgery 2020-2030: Technologies, Players & Markets
Robotic general surgery, robotic catheter and endoscope navigation, robotic positioning of surgical tools, robotic systems for intra-operative camera.

The robotic surgery market will reach over $12 billion by 2030.

For centuries, large incisions were the only way to provide surgeons with a full view of the organ they needed to treat. Recovery time for such a taxing procedure is extensive and post-operative complications are a common occurrence. The introduction of minimally invasive surgery (MIS) in operating theatres has drastically improved patient outcomes. Smaller incisions reduce the risk of infection and accelerate recovery. Many studies have shown that MIS procedures result in decreased post-operative hospital stays, a quicker return to the workforce, decreased pain and better immune function.

As attractive as MIS is, there are several drawbacks due to the technical and mechanical nature of the equipment. These limitations make minimally invasive procedures more challenging, reduce their efficiency and increase operating time.

Robotic surgery was developed to overcome the limitations of MIS and to expand its benefits. It is classified as a type of MIS and involves the use of robotic systems to execute surgical procedures. Although it has been around for over thirty years, robotic surgery is still in its infancy. The market is currently in a rapid state of expansion, however, as it has welcomed dozens of new companies in the last decade. The range of technologies, uses and applications of robotic surgery widens with each new entrant. This field is evolving at a considerable pace and is showing no signs of slowing down. Within the last five years, interest in robotic surgery has soared. Investments in companies operating in this space have skyrocketed since 2016, recording an increase of over 300% in three years, and total investment to date has reached $1.36 billion.

This report breaks down the robotic surgery market into four main sectors:

  • Robotic general surgery
  • Robotic catheter and endoscope navigation
  • Robotic positioning of surgical tools
  • Robotic systems for intra-operative camera manipulation

General surgery is perhaps the best known aspect of robotic surgery due to the presence of Intuitive Surgical, the most famous surgical robot company, in this space. Intuitive Surgical's control on the market has forced the diversification of surgical robots as companies are keen to set themselves apart. There are multiple sectors within general surgery in which the company is not active and other manufacturers have targeted in order to distinguish themselves and their technology.

Medical instruments like catheters are widely used to conduct an intervention within the heart or blood vessels. Catheter ablation procedures require the wire to be pushed manually and expose surgeons to harmful X-ray radiation. Robotic systems discussed in this report may eliminate the need to manually manipulate the wire. This could greatly improve patient outcomes by increasing the speed and efficiency of the intervention. Surgeons could be in another room or a different city, controlling the device with a joystick, thereby reducing the level of radiation inflicted on them.

Robotic systems are increasingly being used to facilitate and optimise the positioning of instruments and tools during surgery. They have proven value in orthopaedic and neurosurgery procedures and are being explored as means to improve laser therapy and biopsy outcomes as well. These systems facilitate operating room workflows by ensuring that surgical tools are inserted at the appropriate angle and depth. The level of precision required often can't be achieved by humans, who are prone to involuntary tremors.

Robotic systems for intra-operative camera manipulation are crucial in surgical procedures as they enable surgeons to see the surgical site and their actions within the patient. They provide a stable view of the operating area, avoiding tremors and other disadvantages that occur when the laparoscope is held by a human. These systems negate the need for an assistant, which reduces the cost of surgery.

The report explores emerging technologies, highlights key players and provides market analysis for each sector. It only covers robots that are directly involved in performing surgical procedures. For instance, robotic systems designed for pre-operative planning purposes only (i.e.: not used intra-operatively) are not included. In the context of this report, the term surgery refers to minimally invasive surgery. Open surgery is not discussed as robotic systems are rarely used in these procedures. The focus is on disease diagnosis, management and treatment. Therefore, robots performing biopsies are included. However, fields such as robotic cosmetic, hair or dental surgery are not discussed. The report also excludes rehabilitation and physiotherapy robots as they do not perform surgery. The report also includes a description of the use of artificial intelligence (AI) and haptic feedback in robotic surgery today.

Historical revenue data (2015-2019) for each sector and the key players within them is provided in this report. Forecasts predicting the size of each market in the next decade (2020-2030) are also included. The ten year forecasts are built on information derived from company interviews, financial reports and press releases, among other sources. Parameters used to calculate values include size of the company, product range, number of units sold and pricing. Other factors such as competitive landscape, access to new entrants and regulatory frameworks were used to extrapolate data for the next decade. The report also provides information such as historical revenue data, market drivers & constraints and investments/funding in each sector.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report scope
  • 1.2. Sectors of robotic surgery covered in this report
  • 1.3. Drivers of the surgical robots market
  • 1.4. Why use robotic surgery?
  • 1.5. Limitations & barriers to adoption
  • 1.6. Mergers & acquisitions in the robotic surgery space
  • 1.7. Investments into robotic surgery companies
  • 1.8. Intuitive Surgical - Key numbers
  • 1.9. Robotic general surgery - Emerging competitors of da Vinci
  • 1.10. Conclusions and outlook - Robotic general surgery
  • 1.11. Robotic catheter and endoscope navigation
  • 1.12. Conclusions and outlook - Robotic catheter navigation
  • 1.13. Robotic positioning of surgical tools
  • 1.14. Conclusions and outlook - Robotic positioning of surgical tools
  • 1.15. Robotic intra-operative camera manipulation
  • 1.16. Conclusions and outlook - Robotic intra-operative camera manipulation
  • 1.17. Market Analysis 2015-2030
  • 1.18. Report summary
  • 1.19. Robotic surgery's multiple benefits have fuelled its rise
  • 1.20. Inherent limitations and conceptual flaws have blocked it
  • 1.21. Competing directly with Intuitive Surgical is highly risky
  • 1.22. Where do the market opportunities lie?
  • 1.23. Does the concept of remote surgery live up to the hype?
  • 1.24. Opportunities for improvement

2. INTRODUCTION

  • 2.1. Report scope
  • 2.2. Open surgery
  • 2.3. Minimally invasive surgery considerably improves recovery time
  • 2.4. Keyhole surgery has non-negligible limitations
  • 2.5. What is robotic surgery?
  • 2.6. History of robotic surgery: an overview
  • 2.7. Early history of robotic surgery
  • 2.8. What operations are surgical robots used for?
  • 2.9. Drivers of the surgical robots market
  • 2.10. Why use robotic surgery?
  • 2.11. Robotic surgery provides enhanced vision
  • 2.12. Limitations & barriers to adoption
  • 2.13. Why are surgical robots so expensive to purchase?
  • 2.14. Regulations & path to market: EU
  • 2.15. Regulations & path to market: USA
  • 2.16. Mergers & acquisitions in the robotic surgery space
  • 2.17. Investments into robotic surgery companies
  • 2.18. Sectors of robotic surgery covered in this report

3. ROBOTIC GENERAL SURGERY

  • 3.1. How does robotic general surgery work?
  • 3.2. Flexible robotic end effectors
  • 3.3. Types of procedures performed by general surgery robots
  • 3.4. Investments into robotic general surgery companies
  • 3.5. Intuitive Surgical - The pioneer of robotic surgery
  • 3.6. Intuitive Surgical - Key numbers
  • 3.7. da Vinci Surgical System
  • 3.8. Approved procedures for da Vinci
  • 3.9. Virtual simulations for robotic surgery training
  • 3.10. Emerging competitors of da Vinci
  • 3.11. Following the da Vinci approach
  • 3.12. Example: TransEnterix
  • 3.13. Example: Avatera
  • 3.14. Example: CMR Surgical
  • 3.15. Example: Titan Medical
  • 3.16. Example: Medtronic
  • 3.17. Flexible arms
  • 3.18. Example: Medrobotics
  • 3.19. Example: Korea Advanced Institute of Science and Technology (KAIST)
  • 3.20. Wearable robotic tool for surgery
  • 3.21. Downsizing surgical robots
  • 3.22. Example: Virtual Incision
  • 3.23. Example: Hong Kong Polytechnic University
  • 3.24. Example: Microsure
  • 3.25. Combining conventional and robotic general surgery
  • 3.26. Example: Galen Robotics
  • 3.27. Example: Distalmotion
  • 3.28. Example: Preceyes
  • 3.29. Handheld, mechanical instruments as an alternative to computer-aided surgery
  • 3.30. Example: FlexDex Surgical
  • 3.31. Example: Human Xtensions
  • 3.32. State of development of robotic general surgery systems
  • 3.33. Summary and outlook

4. ROBOTIC CATHETER AND ENDOSCOPE NAVIGATION

  • 4.1. What are catheters and endoscopes?
  • 4.2. Robotic navigation of medical instruments
  • 4.3. Advantages of robotic navigation systems
  • 4.4. Types of intervention
  • 4.5. How does the wire move?
  • 4.6. Investments into robotic catheter navigation companies
  • 4.7. Key players
  • 4.8. Intuitive Surgical
  • 4.9. Example: Auris Health
  • 4.10. Corindus Vascular Robotics
  • 4.11. Robocath
  • 4.12. Moray Medical
  • 4.13. Autonomous active steering: Fraunhofer IPA
  • 4.14. Autonomous active steering: Harvard Medical School
  • 4.15. Magnetic steering
  • 4.16. Magnetic steering: Stereotaxis
  • 4.17. Magnetic steering: Massachusetts Institute of Technology
  • 4.18. Magnetic steering: Polytechnique Montréal
  • 4.19. State of development of robotic catheter navigation systems
  • 4.20. Summary and outlook

5. ROBOTIC POSITIONING OF SURGICAL TOOLS

  • 5.1. Robotic guidance and positioning
  • 5.2. Investments into robotic instrument positioning companies
  • 5.3. Sectors and key players
  • 5.4. Robotic orthopaedic surgery
  • 5.5. Key components of robotic orthopaedic systems
  • 5.6. Pre-operative software for procedure planning
  • 5.7. Robotic arm holding the instrument
  • 5.8. 3D cameras for real time instrument tracking
  • 5.9. Example: Stryker
  • 5.10. Example: Medtronic
  • 5.11. Example: Zimmer Biomet
  • 5.12. Example: Smith & Nephew
  • 5.13. Example: Brainlab
  • 5.14. Example: Orthotaxy
  • 5.15. Example: Globus Medical
  • 5.16. Example: Curexo
  • 5.17. Example: Eindhoven Medical Robotics
  • 5.18. Comparison of robotic orthopaedic surgery systems
  • 5.19. Why do large orthopaedic companies seek to acquire surgical robots?
  • 5.20. Robotic neurosurgery
  • 5.21. Example: Renishaw
  • 5.22. Example: Kuka Robotics
  • 5.23. Example: AiM Medical Robotics
  • 5.24. Robotic positioning for laser therapy
  • 5.25. Example: Kuka Robotics
  • 5.26. Example: Zeiss VisuMax
  • 5.27. Robotic biopsy
  • 5.28. Example: XACT
  • 5.29. Example: Machnet Medical Robotics
  • 5.30. State of development of robotic surgical tool positioning systems
  • 5.31. Summary and outlook

6. ROBOTIC SYSTEMS FOR INTRA-OPERATIVE CAMERA MANIPULATION

  • 6.1. Robotic intra-operative camera manipulation
  • 6.2. Investments into companies developing intra-operative camera manipulation robots
  • 6.3. Robotic laparoscope holders
  • 6.4. Example: AKTORmed
  • 6.5. Example: OR Productivity
  • 6.6. Example: Storz
  • 6.7. Robotic intra-operative imaging and microscopy
  • 6.8. Example: Brainlab
  • 6.9. Example : Zeiss
  • 6.10. Example: Synaptive Medical
  • 6.11. State of development of robotic intra-operative camera manipulation systems
  • 6.12. Summary and outlook

7. ARTIFICIAL INTELLIGENCE IN ROBOTIC SURGERY SYSTEMS

  • 7.1. Terminologies explained
  • 7.2. AI enables human-robot interaction
  • 7.3. AI facilitates image-guided robotic surgery
  • 7.4. Challenges of using AI for pre-operative planning
  • 7.5. Challenges of AI-driven robotic instrument positioning
  • 7.6. AI in robotic surgery: Legal and regulatory landscape

8. HAPTIC FEEDBACK MECHANISMS IN ROBOTIC SURGERY SYSTEMS

  • 8.1. Surgeons must 'sense' what they are doing
  • 8.2. Haptics in robotic surgery
  • 8.3. Haptics enhance robotic surgery systems
  • 8.4. Components of haptic feedback mechanisms
  • 8.5. How is haptic feedback achieved?
  • 8.6. What types of sensors are used?
  • 8.7. Haptic mechanisms: Challenges for robotic surgery

9. MARKET ANALYSIS

  • 9.1. Chapter overview
  • 9.2. Methodology
  • 9.3. The number of robotic surgery companies will rise exponentially in the next decade
  • 9.4. Historical revenue data - Robotic surgery
  • 9.5. Forecast 2020-2030 - Robotic surgery
  • 9.6. Historical revenue data - Robotic general surgery
  • 9.7. Historical revenue - Intuitive Surgical
  • 9.8. Intuitive Surgical da Vinci systems sold
  • 9.9. Forecast 2020-2030 - Robotic general surgery
  • 9.10. Historical revenue data - Robotic catheter navigation
  • 9.11. Forecast 2020-2030 - Robotic catheter navigation
  • 9.12. Historical revenue data - Robotic surgical tool positioning
  • 9.13. Forecast 2020-2030 - Robotic surgical tool positioning
  • 9.14. Robotic intra-operative camera manipulation: Market share in 2019
  • 9.15. Forecast 2020-2030 - Robotic intra-operative camera manipulation

10. CONCLUSIONS

  • 10.1. Report summary
  • 10.2. Robotic surgery's multiple benefits have fuelled its rise
  • 10.3. Inherent limitations and conceptual flaws have blocked it
  • 10.4. Competing directly with Intuitive Surgical is highly risky
  • 10.5. Where do the market opportunities lie?
  • 10.6. Does the concept of remote surgery live up to the hype?
  • 10.7. Opportunities for improvement

11. COMPANY PROFILES