株式会社グローバルインフォメーション
TEL: 044-952-0102
市場調査レポート

摩擦帯電による環境発電およびセンシング (TENG) :2020-2040年

Triboelectric Energy Harvesting and Sensing (TENG) 2020-2040

発行 IDTechEx Ltd. 商品コード 929141
出版日 ページ情報 英文 179 Slides
納期: 即日から翌営業日
価格
摩擦帯電による環境発電およびセンシング (TENG) :2020-2040年 Triboelectric Energy Harvesting and Sensing (TENG) 2020-2040
出版日: 2020年03月19日 ページ情報: 英文 179 Slides
概要

当レポートでは、摩擦帯電による環境発電およびセンシング (TENG) の市場を調査し、環境発電 (EH:エネルギーハーベスティング) の概要、初期の商業化例、材料の特異性、ウェアラブル機器・外科用機器におけるTENG、IoTとユビキタスセンシングの動向、自己発電センサーの動向、高出力用途および他のEHとの統合型技術の動向などをまとめています。

第1章 エグゼクティブサマリー・総論

第2章 イントロダクション

  • 環境発電 (EH) の基本
  • 環境発電の特徴
  • 低出力 vs 高出力オフグリッド
  • EHエネルギー源の種類
  • EH候補:出力別
  • 特徴:低出力EH vs 高出力EH
  • EHトランスデューサの原理・材料
  • EHトランスデューサー市場の成功:技術別
  • 環境発電システム
  • 摩擦帯電効果
  • TENGの適合性:EHトランスデューサオプションの比較
  • TENGの動作原理・デバイスの最適化
  • 未来への教訓

第3章 初期の商業化例:フィルター・おもちゃ・ノベルティ

  • 初期の商業化例
    • 自己発電静電フィルター
    • 洗えるフェイスマスク
    • バッテリー不要の電子玩具
    • 再生プラスチックの電池不要の電子ゲーム

第4章 材料の特異性:自己修復性・透明性・伸縮性・疎水性・生体適合性など

  • 自己修復性
  • 透明性・伸縮性
  • 生体適合性
  • デンドライトフリーのリチウム金属電池
  • 材料の市場機会

第5章 ウェアラブル機器・外科用機器

  • 概要
  • ウェアラブルのハイプカーブ
  • ウェアラブル・外科用TENGの例
  • TENGが対処しなければならないウェアラブル技術の動向
  • 基本的なウェアラブルデバイス:コンポーネントタイプ別
  • ウェアラブルセンサーの分類
  • 実験的TENG設計の例
  • 人体向けの実験的なTENG設計:その他の例
  • 太陽光・動きから発電するテキスタイル
  • 3つのファイバー形状のコンポーネント
  • 電子スキンとしての超伸縮性で透明な摩擦帯電ナノ発電機
  • フレキシブル自己発電触覚センシング皮膚パッチ

第6章 IoTとユビキタスセンシング

  • 概要
  • IoTの多くの課題の解消
  • 無線センサーによる環境発電に利用できるアンビエントエネルギー
  • IoT時代における統合型摩擦帯電ナノ発電機
  • IoTなどに向けた自己発電式摩擦帯電アクティブセンサー
  • 自己発電IoTワイヤレスセンサーを備えた誘導コイル

第7章 自己発電センサー

  • 自己発電センサーの概要
  • 接触位置を検出する柔軟なタッチパッド
  • 軟質平面スパイラル電極を使用した近接&接触検出
  • ウェアラブル用の広範囲の圧力検出用センサー
  • 液体検知用のマイクロ流体システム
  • 圧力マッピング・タッチ
  • 自己発電による埋め込み型心臓モニター

第8章 高出力用途および他のEHとの統合型技術

  • ハイパワー蓄電池への充電
  • 世界を変える構造エレクトロニクスの一部としてのTENG
  • 構造エレクトロニクスの大幅な進歩に挑戦する企業
  • スマートロード
  • 中国:太陽光発電道路のPavenergy
  • 構造エレクトロニクスの製造・技術の対応レベル:産業部門別
  • 保護コーティングまたはラップとしての構造エレクトロニクス:用途の比較
  • 耐荷重構造としての構造エレクトロニクス:用途の比較
  • 構造エレクトロニクス技術の比較
  • 技術形態
  • TENG機能:構成別
  • 川・海の動きによる発電
  • 木々・葉の利用
  • 統合型マルチモード環境発電の進化
目次

Title:
Triboelectric Energy Harvesting and Sensing (TENG) 2020-2040
Triboelectric nanogenerators, HV sources, filters Materials, capabilities, opportunities, technology roadmaps, forecasts.

"New triboelectrics address big issues such as pandemics to create billion dollar businesses."

Of the twelve types of energy harvesting, five are capturing motion and the latest of these is analysed and forecasted in the new IDTechEx report, "Triboelectric Energy Harvesting and Sensing (TENG) 2020-2040". Self-powered sensors and filters are also there.

This report is intended to be an easily absorbed summary of progress and forecast of the future of the new form of energy harvesting invented in 2012 yet already demonstrated in an unprecedented variety of forms: edible, biodegradable, self-cleaning, even integrated with most other harvesting technologies.

The focus is the commercial prospects and how to benefit society, matching achieved to needed. IDTechEx makes no attempt to compete with excellent academic summaries but if you want forecasts for the markets being targeted - vehicles, skin patches, wearable technology, ocean wave power etc., those forecasts are here and only here. Understand the work not yet prioritised for commercial launch.

Insights are based on extensive travel by IDTechEx PhD level analysts, new interviews in local languages, conference attendance, data searches. The work is mostly carried out in 2020 with ongoing updates. Many scientific advances in 2020 are assessed. Easily comprehended by those wishing to make the necessary materials, devices and systems, it de-risks investment.

The report helps investors, potential users, companies active in Internet of Things, personal electronics, electrics, healthcare, automotive, industrial, off-grid power for microgrids and vehicles. The most promising future applications are identified. Emphasis is commercialisation and which industrial sectors could benefit when missing elements of the routes to market are in place. Opportunities for added value materials are evaluated. A ten-year forecast is given plus a roadmap to 2040.

All vibration harvesting has been a commercial failure. Will the triboelectric nanogenerator TENG version succeed? First commercialisation has been triboelectric air filters. Why, where, next improvement? Which of the four harvesting modes are useful for what and where is the best work? See new infograms, graphs, timelines rather than equations. Why are fluoropolymers 55% of electro-negative materials used - a challenge and an opportunity? Next?

The "Executive Summary and Conclusions" is sufficient for those in a hurry with 30 primary conclusions and that host of relevant forecasts including haptics and active RFID markets, technology summary, future. Energy harvesters, triboelectric air filters and self-powered sensors and actuators and favoured materials explained: gaps in the market.

"Introduction" explains energy harvesting, twelve technologies - materials, capability, market needs overall. Learn systems aspects, parameters, practicalities of the triboelectric series and the troublesome variety of influencing factors. Four modes are looked at in great detail, electrostatic harvesting generally and lessons for the future. Chapter 3 details "Early Commercialisation: Self-Powered Filters, Toys and Novelties" already sold and what comes next . Chapter 4 analyses "Materials Virtuosity: Self-healing, Transparent, Stretchable, Hydrophobic, Biocompatible and More". IDTechEx presents new ideas and benchmarking.

With many new tables and pictures, Chapter 5 is "Wearable and Surgical". Much is being developed for these sectors: appropriate needs are manifold. Chapter 6 assesses the place in, "Internet of Things and Ubiquitous Sensing" cutting through exaggeration in these industries. Chapter 7 is where "Self-powered Sensors" TENG research is leading. Chapter 8 considers huge potential for "High Power and Combined with Other EH" critically scoping opportunity in wave and wind power, smart roads etc. and the emergence of structural electronics of which triboelectrics is a part. In contrast to many research papers dismissive or ignorant of other options, this also places the report "Triboelectric Energy Harvesting and Sensing (TENG) 2020-2040" firmly in the real world and the other improving technologies again with new ideas from IDTechEx.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Misnomers
  • 1.3. Wishful thinking
  • 1.4. Background
  • 1.5. Primary conclusions: context
  • 1.6. Primary conclusions : research and development effort
  • 1.7. Primary conclusions : performance available matched to potential applications
  • 1.8. Healthcare sensors: learn from piezoelectrics
  • 1.9. Energy harvesting of motion: transducer options compared
  • 1.10. The vibration harvesting mirage
  • 1.11. Primary conclusions: technical challenges and progress to market
  • 1.12. Primary conclusions: matching TENG to market needs
    • 1.12.1. Energy harvesting technology choice by intermittent power generated
    • 1.12.2. Some appropriate markets
    • 1.12.3. Market priorities for improvement
    • 1.12.4. Hype curve for triboelectric devices
    • 1.12.5. Timeline: triboelectric air filters & HV power, triboelectric sensors & actuators, TENG harvesters 2012-2040
  • 1.13. Primary conclusions: theory still needed
  • 1.14. Primary conclusions: materials opportunities
  • 1.15. Market forecasts
    • 1.15.1. TENG transducer and sensor low vs high power 2020-2040 $ million
    • 1.15.2. Addressable high power market
    • 1.15.3. Total zero-emission power market <100MW systems 2030 and 2040
    • 1.15.4. Wearable technology market forecast
    • 1.15.5. Forecast: cardiac monitoring skin patches
    • 1.15.6. Forecast: skin patches for continuous diabetes management
    • 1.15.7. Forecast: medical motion sensing patches
    • 1.15.8. Haptics forecast
    • 1.15.9. Forecast: battery assisted and active RFID
    • 1.15.10. Potential for triboelectric air filters TAF in cars 2020-2030
    • 1.15.11. Triboelectric Air Filter TAF forecast

2. INTRODUCTION

  • 2.1. Basics of energy harvesting (EH)
  • 2.2. Features of energy harvesting
  • 2.3. Low power vs high power off-grid
  • 2.4. Types of EH energy source
  • 2.5. Some of the candidates for EH by power
  • 2.6. Low power vs high power EH features
  • 2.7. EH transducer principles and materials
  • 2.8. Energy harvesting transducer market success by technology
  • 2.9. Fantasy
  • 2.10. Energy harvesting systems
    • 2.10.1. Architecture
  • 2.11. Triboelectric effect
    • 2.11.1. Overview
    • 2.11.2. Commercialisation of EH of motion showing some TENG opportunities
  • 2.12. How TENG fits in: EH transducer options compared
    • 2.12.1. Production status by technology
    • 2.12.2. Comparison of desirable features of EH technologies
    • 2.12.3. Basics for harvesting and sensing: triboelectric dielectric series
    • 2.12.4. Triboelectric dielectric series examples showing wide choice of properties
    • 2.12.5. Commentary on dielectric series
    • 2.12.6. Four ways to make a TENG
    • 2.12.7. TENG modes with advantages, potential uses
    • 2.12.8. Parametric advantages and challenges of triboelectric EH
    • 2.12.9. TENG relative benefits
    • 2.12.10. TENG relative benefits matched to potentially large markets
  • 2.13. TENG operating principle and device optimisation in detail
    • 2.13.1. Contact and sliding modes compared
    • 2.13.2. Single electrode and contactless modes compared
    • 2.13.3. Basic devices eliminating batteries: Clemson University
    • 2.13.4. Electrostatics in energy harvesting
  • 2.14. Lessons for the future

3. EARLY COMMERCIALISATION: FILTERS, TOYS AND NOVELTIES

  • 3.1. First commercialisation
    • 3.1.1. Self-powered electrostatic filters
    • 3.1.2. Washable face masks
    • 3.1.3. Battery free electronic toys
    • 3.1.4. Electronic game with no battery from recycled plastic

4. MATERIALS VIRTUOSITY: SELF HEALING, TRANSPARENT, STRETCHABLE, HYDROPHOBIC, BIOCOMPATIBLE AND MORE

  • 4.1. Self Healing
  • 4.2. Transparent, stretchable
  • 4.3. Biocompatible
  • 4.4. Dendrite-free lithium metal batteries
  • 4.5. Materials opportunities
    • 4.5.1. Overview
    • 4.5.2. Functionalisation and other options
    • 4.5.3. Materials for 24 laminar TENG
    • 4.5.4. Materials for 12 vertical arch TENG
    • 4.5.5. Materials for 4 textile and fibre TENG
    • 4.5.6. Materials for 8 rotating TENG
    • 4.5.7. Materials for 13 other TENG variants

5. WEARABLE AND SURGICAL

  • 5.1. Overview
  • 5.2. Wearables hype curve
  • 5.3. Examples of TENG for wearable and surgical
  • 5.4. Trends in wearable technology that TENGs must address
  • 5.5. Basic wearable device by component type
  • 5.6. Categorisation of wearable sensors
  • 5.7. Examples of experimental TENG designs
  • 5.8. Other examples of experimental TENG designs for the human body
  • 5.9. Textiles harvesting solar and movement
  • 5.10. Three fibre-shaped components
  • 5.11. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin
  • 5.12. Flexible self-powered tactile sensing skin patches

6. INTERNET OF THINGS AND UBIQUITOUS SENSING

  • 6.1. Overview
  • 6.2. Many challenges of IoT have been solved
  • 6.3. Ambient energy available for energy harvesting by wireless sensors
  • 6.4. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things
  • 6.5. Self-powered triboelectric active sensors for IOT etc
  • 6.6. Induction coils with self-powered IoT wireless sensors

7. SELF-POWERED SENSORS

  • 7.1. Self-powered sensors overview
  • 7.2. Examples of sensors with printing and film
  • 7.3. Flexible touch pad detecting contact location
  • 7.4. Proximity and contact detection using soft planar spiral electrodes
  • 7.5. Sensor for wide-range pressure detection in wearables
  • 7.6. Microfluidic system for liquid sensing
  • 7.7. Pressure mapping, touch
  • 7.8. Self-powered implantable heart monitor

8. HIGH POWER AND COMBINED WITH OTHER EH

  • 8.1. Charging high power energy storage
  • 8.2. TENG as part of structural electronics changing the world
  • 8.3. Some organisations attempting significant SE advances
    • 8.3.1. Structural electronics patents
    • 8.3.2. SE product and technology roadmaps 2019-2040
  • 8.4. Smart roads
  • 8.5. Solar road Pavenergy China
  • 8.6. Structural electronics manufacturing and technology readiness by applicational sector
  • 8.7. Structural electronics as protective coating or wrap: applications compared
  • 8.8. Structural electronics as load bearing structure: applications compared
  • 8.9. Structural electronics technologies compared
  • 8.10. Formats of technology
  • 8.11. TENG capabilities by configuration
  • 8.12. Electricity from river and sea motion
    • 8.12.1. Hype curve for water power
    • 8.12.2. Global potential for strong ocean power near population
    • 8.12.3. Open water wave power options compared
    • 8.12.4. Likely blue energy successes 2020-2030
    • 8.12.5. Favoured configurations so far
    • 8.12.6. TENG for wind and ocean wave
    • 8.12.7. Long-lived rotational TENG for water power
    • 8.12.8. Capillary approach to water power
    • 8.12.9. Spherical wave power generator
    • 8.12.10. Wave power using self-cleaning surface
  • 8.13. TENG using leaves and TENG tree for wind power
  • 8.14. Evolution of integrated multi-mode energy harvesting
    • 8.14.1. Four TENG modes as multi-mode harvesters
    • 8.14.2. Much can be done with metal patterning
    • 8.14.3. TENG multi-mode energy harvesting cases