株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

レドックスフロー電池の世界市場 (2020-2030年):予測・課題・市場機会

Redox Flow Batteries 2020-2030: Forecasts, Challenges, Opportunities

発行 IDTechEx Ltd. 商品コード 929140
出版日 ページ情報 英文 181 Slides
納期: 即日から翌営業日
価格
レドックスフロー電池の世界市場 (2020-2030年):予測・課題・市場機会 Redox Flow Batteries 2020-2030: Forecasts, Challenges, Opportunities
出版日: 2020年03月19日 ページ情報: 英文 181 Slides
概要

送電網事業者にとって送電網の近代化と脱炭素化が今日の大きな課題となっており、エネルギー貯蔵デバイスが電力網の統合・最新化に向けた重要なソリューションとしてもっとも広く導入されています。これにより、アンシラリーサービスの提供、グリッドの安定化、再生可能エネルギー源による余剰電力の蓄電が可能となります。さまざまなエネルギー貯蔵技術の中で、電気化学デバイスは、ロケーションの柔軟性、効率、拡張性の点からもっとも一般的な選択肢の1つです。なかでもレドックスフロー電池 (RFB) は中規模・大規模用途においてもっとも選ばれるソリューションの1つとなっています。ミリ秒単位の高速応答、20,000サイクル以上の長いサイクル寿命、リサイクルが容易なコンポーネントなどの要因から、RFBは市場導入を着実に増やしています。

当レポートでは、世界のレドックスフロー電池 (RFB) の市場を調査し、RFBの定義と概要、価値・重要性、競合技術、各種タイプと特徴、自動車向けRFBの取り組み、材料・コストの分析、ケーススタディ、地域動向、主要企業のプロファイルなどをまとめています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

  • 性能の比較
  • 各種定義
  • レドックスフロー電池:動作原理、など
  • 定置型蓄電池の新しい道程
  • 電池のトリレンマ
  • 定置型蓄電池の重要性の拡大
  • 顧客サイドの価値
  • ユーティリティサイドの価値
  • アンシラリーサービスにおける価値
  • RFB・従来型電池の比較
  • 競合技術:リチウムイオン
  • 競合技術:Tesla PowerWall
  • 競合技術:リチウムイオン・RFBのLCOS
  • 競合技術:Na/S
  • RFBの事例
  • RFBの事例:比較
  • RFBの事例:定置型電池の比較
  • RFBの事例:RFBのコスト
  • RFBの事例:LCOS
  • 自動車向けレドックスフロー電池
  • 自動車向けレドックスフロー電池:GE
  • 自動車向けレドックスフロー電池:トヨタ
  • 自動車向けレドックスフロー電池:nanoFlowcell、など

第3章 レドックスフロー電池のタイプ

  • 定義:気体電極・液体電極
  • 定義:陰極液・陽極液
  • レドックスレドックス活性種・溶剤の選択
  • レドックスフロー電池の分類
  • RFB発展の経緯
  • RFBの化学物質:イオン/クロム
  • RFBの化学物質:多硫化物 /臭素フロー電池 (PSB)
  • RFBの化学物質:バナジウム/臭素
  • RFBの化学物質:オールバナジウム (VRFB)
  • RFBの化学物質:亜鉛臭素フロー電池 (ZBB) - ハイブリッド
  • RFBの化学物質:臭素/水素 - ハイブリッド
  • RFBの化学物質:全イオン - ハイブリッド
  • その他のRFB:有機レドックスフロー電池
  • その他のRFB:非水系
  • その他のRFB:ラボスケールフロー電池プロジェクト
  • その他のRFB:マイクロフロー電池
  • 技術
  • 電解液のコスト因子、など

第4章 材料・コストの分析

  • レドックスフロー電池の材料
  • メンブレン:概要
  • メンブレン:メソポーラスセパレーター
  • メンブレン:イオン交換膜 (IEM)
  • メンブレン:複合材料膜・固体コンダクター
  • 双極電極
  • 双極電極:寄生効果
  • 双極電極:電極材料
  • 電極:炭素系電極
  • (双極) 電極
  • 流れ分配器・乱流プロモーター
  • 電解液フロー回路
  • バナジウムレドックスフロー電池のコスト内訳
  • RFBのバリューチェーン
  • RFB電解液の原材料
  • バナジウム:概要
  • バナジウム:掘削・製品
  • バナジウム:選鉱
  • バナジウム産業
  • バナジウム:価格動向、など

第5章 ケーススタディ・地域分析・企業プロファイル

  • ケーススタディ:Bushveld Energy
  • ケーススタディ:RedT / Avalon Battery Merge
  • ケーススタディ:Jena Batteries
  • 地域分析:EU
  • 地域分析:中国
  • 地域分析:米国
  • 地域分析:オーストラリア
  • 地域分析:南アフリカ
  • 企業プロファイル

第6章 付録

目次

Title:
Redox Flow Batteries 2020-2030: Forecasts, Challenges, Opportunities
Technical and market analysis of Vanadium, Organic, and earth abundant flow batteries, from residential to grid scale applications.

Vanadium flow batteries are dominating the RFB market, accounting for more than 50% of the market.

The modernization and decarbonization of the electricity grid are setting a big challenge for the electric grid operators. To integrate and update the electricity grid, energy storage devices are one of the main solutions adopted, allowing the storage of the excess electricity produced by renewable energy sources, besides providing ancillary services, and stabilising the grid.

Within the different energy storage technologies, the electrochemical devices are one of the most common choices because of their location flexibility, efficiency, and scalability. From different electrochemical devices available, the Redox flow batteries (RFBs) are one of the most chosen solutions for medium and large-scale applications. The fast time response (in the range of milli seconds), a long cycle life (more than 20,000 cycles), and their easily recyclable components, allow the RFBs to steadily increase their adoption on the market.

While the stationary energy storage market is currently dominated by Li-ion batteries, redox flow batteries are slowly being adopted with an increasing number of projects all over the world.

The redox flow batteries have been developed for more than 40 years, and available on the market for almost 20 years. The flow battery producers, in particular vanadium redox flow battery (VRFB) manufacturers, have abundantly developed, tested, and demonstrated the technology over the years, reaching an overall installation of roughly 70MW of power and 250 MWh of energy. Flow battery producers keep receiving funding to expand manufacture, improve their products and reduce the technology cost. Moreover, solid collaborations between flow battery manufacturers, OEMs, and chemical and mining companies are taking place all over the world, with the common target to make this technology competitive on the market.

To better understand the flow battery market and forecast future developments, IDTechEx performed an in-depth analysis of the different types of flow batteries, investigating the historical development of each technology and related flow battery market evolution. Moreover, to understand the technological development, and the adoption of this technology in the next years, several companies were profiled.

The results of these studies, presented in this report, revealed a market dominated by one of the oldest technologies, the vanadium redox flow battery (VRFB), which accounts for more than 50% of the available companies commercialising flow batteries. Besides the VRFB, other flow battery manufacturers are developing flow batteries based on different electrolytes, like the Organic flow battery (ORFB), and All-iron (Fe-RFB), Hydrogen/Bromine or Zinc/Bromine flow batteries (ZBB). In the report a summary of the main properties of each electrolyte are presented.

The reader will understand the possibilities and the challenges of each type of electrolyte, explained in a simple and concise way. It will allow to evaluate himself/herself the characteristics of each technology, and related chances to conquer its share of the market.

Besides the investigation of different electrolytes, an analysis of the battery electrode stack, one of the core parts of this technology, is provided. The different components of the electrode stack are explained, together with investigating the different possible materials employed. This would allow investors, OEMs and chemical companies, to understand the different materials involved, and where further improvements will be required.

Besides the technical prospective of the technology, IDTechEx investigated why, and how, different countries are involved in the adoption of RFBs. Therefore, Chapter 5 provides an overview of different countries, covering Europe, US, Africa, and China, where it is explained how these countries are approaching the flow battery technology.

From these wide and in-depth techno-economic analysis, IDTechEx aims to facilitate investors, OEMs and chemical industries to understand the current redox flow battery market, and its future development between 2020-2030.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The slow market of Redox Flow Batteries
  • 1.2. Market forecast: Market Insight
  • 1.3. Market forecast: Considerations
  • 1.4. IDTechEx Flow Battery Forecast
  • 1.5. Market forecast: Assumptions
  • 1.6. Market forecast: Market Share
  • 1.7. Companies in this Report
  • 1.8. Market Analysis: Redox flow battery Market Overview
  • 1.9. Market Analysis: TRL and MRL explanation
  • 1.10. Market Analysis: Flow Battery on the Market
  • 1.11. Market Analysis: Companies TRL, MRL Evaluation
  • 1.12. Market Analysis: Technology Market Share
  • 1.13. Market Analysis: Company Market Share
  • 1.14. Market Analysis: Companies Power/Energy Product Comparison
  • 1.15. Market Analysis: Energy Densities Comparison for Residential Sector
  • 1.16. Redox flow batteries in the news
  • 1.17. From the News: BASF interests in Flow Batteries
  • 1.18. From the News: ViZn... back on the scene!
  • 1.19. From the News: CellCube Part 1 - 100 MWh in USA
  • 1.20. From the News: CellCube Part 2 - 120 MWh in UK
  • 1.21. From the News: CellCube Part 3 - "Enerox for Sale"
  • 1.22. From the News: Schmid Group from China to Saudi Arabia.
  • 1.23. From the News: Shell: from Vanadium (RFB) to LIB
  • 1.24. From the News: Voltstorage on the News
  • 1.25. From the News: Bushveld, the company that created its future

2. INTRODUCTION

  • 2.1. Useful charts for performance comparison
  • 2.2. Definitions: What is a battery?
  • 2.3. Definitions: Electrochemistry definitions
  • 2.4. Electrochemistry definitions
  • 2.5. Definitions: Efficiencies
  • 2.6. Definitions: Cross-Mixing, and Shunt current
  • 2.7. Redox Flow Battery: Energy & Power
  • 2.8. Redox Flow Battery: Decoupled power and energy
  • 2.9. Redox Flow Battery: Working Principle
  • 2.10. Redox Flow Battery: Fit-and-forget philosophy
  • 2.11. Redox Flow Battery: RFB views
  • 2.12. What does 1 kilowatt-hour (kWh) look like?
  • 2.13. Finding the right market
  • 2.14. New avenues for stationary storage
  • 2.15. The battery trilemma
  • 2.16. The increasingly important role of stationary storage
  • 2.17. Stationary energy storage is not new
  • 2.18. New avenues for stationary storage
  • 2.19. Values provided at the customer side
  • 2.20. Values provided at the utility side
  • 2.21. Values provided in ancillary services
  • 2.22. Comparison of RFBs and conventional batteries
  • 2.23. Competing technologies: Li-ion
  • 2.24. Competing technologies: Tesla PowerWall
  • 2.25. Competing technologies: LCOS of Li-ion and RFBs
  • 2.26. Competing technologies: Na/S
  • 2.27. The case for RFBs
  • 2.28. The case for RFBs: A Comparison
  • 2.29. The case for RFBs: Stationary Batteries Comparison
  • 2.30. The case for RFBs: RFB Cost
  • 2.31. The case for RFBs: LCOS
  • 2.32. Redox flow batteries and caves
  • 2.33. Redox Flow Batteries for Automotive
  • 2.34. Redox Flow Batteries for Automotive: GE
  • 2.35. Redox Flow Batteries for Automotive: Toyota
  • 2.36. Redox Flow Batteries for Automotive: nanoFlowcell

3. TYPES OF REDOX FLOW BATTERIES

  • 3.1. Definition: Gaseous and liquid electrodes
  • 3.2. Definition: Catholytes and anolytes
  • 3.3. Choice of redox-active species and solvents
  • 3.4. Redox Flow Battery Classification
  • 3.5. History of RFB
  • 3.6. RFB chemistries: Iron/Chromium
  • 3.7. RFB chemistries: Polsulfides/Bromine flow batteries (PSB)
  • 3.8. RFB chemistries: Vanadium/Bromine
  • 3.9. RFB chemistries: All Vanadium (VRFB)
  • 3.10. RFB chemistries: Zinc Bromine flow battery (ZBB) - Hybrid
  • 3.11. RFB chemistries: Hydrogen/Bromide - Hybrid
  • 3.12. RFB Chemistries: all Iron - Hybrid
  • 3.13. Other RFBs: Organic Redox Flow Battery
  • 3.14. Other RFBs: non-aqueous
  • 3.15. Other RFBs: Lab-scale flow battery projects
  • 3.16. Other RFBs: Microflow batteries?
  • 3.17. Technology Recap
  • 3.18. Cost factors at electrolyte level
  • 3.19. Hype Curve® for RFB technologies

4. MATERIALS AND COST ANALYSIS

  • 4.1. Materials for Redox Flow Batteries
  • 4.2. Membranes: Overview
  • 4.3. Membranes: Mesoporous Separators
  • 4.4. Membranes: Ionic Exchange Membranes (IEM)
  • 4.5. Membranes: Composite Membranes, and Solid State Conductors
  • 4.6. Bipolar Electrodes
  • 4.7. Bipolar Electrodes: Parasitic Effect
  • 4.8. Bipolar Electrodes: Electrode Materials
  • 4.9. Electrodes: Carbon-based Electrodes
  • 4.10. (Bipolar) Electrodes
  • 4.11. Flow distributors and turbulence promoters
  • 4.12. Electrolyte flow circuit
  • 4.13. Cost breakdown of a Vanadium-redox flow battery
  • 4.14. RFB value chain
  • 4.15. Raw materials for RFB electrolytes
  • 4.16. Vanadium: Overview
  • 4.17. Vanadium: Mining and Products
  • 4.18. Vanadium: Ore Processing
  • 4.19. The Vanadium Industry
  • 4.20. Vanadium: Price Trend

5. CASE STUDIES, REGIONAL ANALYSIS, AND COMPANY PROFILES

  • 5.1. Case Study: Bushveld Energy
  • 5.2. Case Study: RedT / Avalon Battery Merge
  • 5.3. Case Study: Jena Batteries
  • 5.4. Regional Analysis: EU
  • 5.5. Regional Analysis: China
  • 5.6. Regional Analysis: U.S.
  • 5.7. Regional Analysis: Australia
  • 5.8. Regional Analysis: South Africa
  • 5.9. Company Profiles

6. APPENDIX

  • 6.1. References
  • 6.2. Technology and manufacturing readiness
  • 6.3. List of RFB Producers: Categorized Chemistry