株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

EV (電動輸送機器) 用電気モーター:陸上車両・船舶・航空機 (2020-2030年)

Electric Motors for Electric Vehicles: Land, Water, Air 2020-2030

発行 IDTechEx Ltd. 商品コード 926562
出版日 ページ情報 英文 263 Slides
納期: 即日から翌営業日
価格
EV (電動輸送機器) 用電気モーター:陸上車両・船舶・航空機 (2020-2030年) Electric Motors for Electric Vehicles: Land, Water, Air 2020-2030
出版日: 2020年01月31日 ページ情報: 英文 263 Slides
概要

乗用車、バス、小型・中型・大型トラック、マイクロEV、建設・農業・鉱業用車両、航空機、船舶などEV (電動輸送機器) に向けた電気モーターの市場は、2030年には1000億ドルを超える規模に成長すると予測されています。

当レポートでは、EV (電動輸送機器) 用電気モーターの市場を調査し、各カテゴリーにおける主要技術・主要機器・主要企業の動向、カテゴリー別の市場規模の推移・予測、将来の展望などをまとめています。

第1章 エグゼクティブサマリー・総論

  • 調査目的・調査範囲
  • 調査手法
  • 総論
  • モーターのニーズ:パワートレインタイプ別
  • 予測:カテゴリー別
    • 概要
    • 建設
    • 農業
    • 鉱業
    • イントラロジスティクス
    • 空港・オフロード
    • バス
    • トラック
    • 自動車
    • 小型EV
    • 軍用車両
    • ドローン
    • 航空機
    • 鉄道
    • 船舶
    • 家庭用・その他
  • EV用モーター技術の内訳
    • 建設部門
    • 農業部門
    • 鉱業・イントラロジスティクス部門
    • バス・トラック
    • 自動車・自動車様車両
    • 二輪車・軍用車両・ドローン
    • 有人航空機・電池電車
    • 船舶・家庭用ロボット・その他
  • モーターの収益性:車両カテゴリー別
  • ネオジムのコスト動向
  • 売上:地域別
  • 自動車向けモーター技術:世界のEV市場シェア

第2章 イントロダクション

  • 電気モーターの製造
  • 動作原理
  • EV用電気モーターの詳細区分
  • EV用モーターのメリットの比較
  • 主要モーター
  • 主要技術

第3章 EV用モーターの11の動向

  • 概要
  • 11の動向

第4章 モーター設計上の課題

  • Dana Corporation:TM4
  • 企業のエクスペリエンスとデザイナーの好み
  • Teslaから学ぶ教訓
  • スイッチトリラクタンスモーター
  • EV誘導モーターの進歩
  • 48Vハイブリッド車:超大型モーター市場の台頭、など

第5章 高PWR (重量出力比) 向け軸流

  • 高い重量出力比の追求
  • 特許分析:軸流モーター
  • Rolls Royce・Siemens・Yasa
  • AVID EVO
  • Equipmake
  • Magnax

第6章 人気拡大のインホイールモーター

  • 概要
  • Lightyear
  • Elaphe
  • 日本電産、など

第7章 オフロード用大型EVモーター

  • 概要:オンロードと異なるニーズ
  • 竹内製作所:TB216Hハイブリッド小型掘削機
  • Caterpillar:全電動掘削機
  • Hyundai:電動掘削機
  • 軍用製品:概要
  • Balquon・Alke・Polaris・Columbia・Hummer・Green Wheel・Quantum FCT各社の車両
  • 大型軍用車両:BAE Systems・米国DOD・Millenworks・Oshkosh
  • 最近の進歩
  • 電気ボート・船舶、など

第8章 モーター制御技術

  • 概要
  • 主要動向
  • ダイレクトドライブとトランスミッション
  • 鍵となるパワー半導体
  • 普及と簡素化
  • 将来の48Vマイルドハイブリッドモーターコントローラー、など
目次

"By 2030, the market for EV motors will surpass $100bn and have many premium pricing opportunities."

This report is of vital interest to all in the electric vehicle value chain from materials and component suppliers to parts and motor manufacturers a product integrators. Indeed there is much here for vehicle manufacturers and it is essential reading for planners. Electric motors are the only components that appear in all electric vehicles. Even batteries are sometimes replaced by supercapacitors. Every year, IDTechEx rewrites its definitive study of such motors. This year a new assessment is particularly important because so many things are changing. The chapters reflect these changes. Firstly, the Executive Summary and Conclusions, complete in itself, presents new conclusions about the sales and technology trends. The proliferation of applications is reflected in the world's most detailed forecasts for 101 categories of land, water and airborne vehicle over 12 years giving number, kWh and gross GWh for motors: 3,636 data points. Beyond that, the percentage of each motor technology for the 101 categories is given for 2020 and 2030 plus historical regional data.

The Introduction explains design choices in lucid new infograms. Learn how and why for such choices as external and internal rotor, synchronous vs asynchronous and subsets of that with the latest on which applications are winning and why and the issues.

Reflecting the new realities, there is a comprehensive chapter on 11 new trends in EV motors and their industry. A subsequent chapter focuses on the surge in adoption for axial flux motors - why and where - then one dives into 48V mild hybrids and soon 48V full hybrids becoming a massive market for complex starter-motor-generators and sometimes two motor architectures.

There is a chapter on the newly important large motors up to megawatts for land, water and air vehicle and we cover those essential controllers now so often costing more than the motor and integrated into it. Which motor technologies scale well here?

The 260 page report is replete with new graphs, tables, infograms and interview information.

The report is based on over 20 years researching EV motors globally by PhD level analysts interviewing in local languages and distilling inputs from privileged databases including our own and our longstanding conferences and consultancy in the subject.

You even learn new principles of electric propulsion and their potential and the activities of a host of new start ups for this is truly the only up-to-date comprehensive report on the subject. The orientation is much more commercial than academic.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose and scope of this report
  • 1.2. Methodology
  • 1.3. Primary conclusions: markets
  • 1.4. Primary conclusions: technology
  • 1.5. Motor needs by type of powertrain
  • 1.6. Forecasts 2019-2030
    • 1.6.1. Forecast overview 2019-2030 (applicational sectors) - vehicle number thousand
    • 1.6.2. Forecast overview 2019-2030 (applicational sectors) - bnW
    • 1.6.3. Forecasts 2019-2030: Construction - vehicle number thousand
    • 1.6.4. Forecasts 2019-2030: Construction - bnW
    • 1.6.5. Forecasts 2019-2030: Agriculture - number thousand
    • 1.6.6. Forecasts 2019-2030: Agriculture - bnW
    • 1.6.7. Forecasts 2019-2030: Mining - vehicle number thousand
    • 1.6.8. Forecasts 2019-2030: Mining - bnW
    • 1.6.9. Forecasts 2019-2030: Intralogistics - vehicle number thousand
    • 1.6.10. Forecasts 2019-2030: Intralogistics - bnW
    • 1.6.11. Forecasts 2019-2030: Airport & off-road - vehicle number thousand
    • 1.6.12. Forecasts 2019-2030: Airport & off-road - bnW
    • 1.6.13. Forecasts 2019-2030: Buses - vehicle number thousand
    • 1.6.14. Forecasts 2019-2030: Buses - bnW
    • 1.6.15. Forecasts 2019-2030: Trucks - vehicle number thousand
    • 1.6.16. Forecasts 2019-2030: Trucks - bnW
    • 1.6.17. Forecasts 2019-2030: Cars- vehicle number thousand
    • 1.6.18. Forecasts 2019-2030: Cars- bnW
    • 1.6.19. Forecasts 2019-2030: Light Electric Vehicles - vehicle number thousand
    • 1.6.20. Forecasts 2019-2030: Light Electric Vehicles - bnW
    • 1.6.21. Forecasts 2019-2030: Military- vehicle number thousand
    • 1.6.22. Forecasts 2019-2030: Military- bnW
    • 1.6.23. Forecasts 2019-2030: Drones - vehicle number thousand
    • 1.6.24. Forecasts 2019-2030: Drones - bnW
    • 1.6.25. Forecasts 2019-2030: Aircraft - vehicle number thousand
    • 1.6.26. Forecasts 2019-2030: Aircraft - bnW
    • 1.6.27. Forecasts 2019-2030: Trains - vehicle number thousand
    • 1.6.28. Forecasts 2019-2030: Trains - bnW
    • 1.6.29. Forecasts 2019-2030: Marine - vehicle number thousand
    • 1.6.30. Forecasts 2019-2030: Marine - bnW
    • 1.6.31. Forecasts 2019-2030: Home & other - vehicle number thousand
    • 1.6.32. Forecasts 2019-2030: Home & other - bnW
  • 1.7. EV motor technology split 2020 and 2030
    • 1.7.1. Construction sector
    • 1.7.2. Agriculture sector
    • 1.7.3. Mining and intralogistics sectors
    • 1.7.4. Buses and trucks
    • 1.7.5. Cars and car-like vehicles
    • 1.7.6. Two wheel, military, drone
    • 1.7.7. Manned aircraft, battery trains
    • 1.7.8. Marine, home robot, other
  • 1.8. Motor profitability by vehicle sector 2030 explained
  • 1.9. Neodymium cost trends spell trouble
    • 1.9.1. Boiling the frog
    • 1.9.2. Permanent magnets more popular but eventually unnecessary?
  • 1.10. Regional sales
    • 1.10.1. China
    • 1.10.2. Europe
    • 1.10.3. USA
  • 1.11. Motor technologies for cars: global EV market shares

2. INTRODUCTION

  • 2.1. Electric motor construction: mainly internal rotor
  • 2.2. Three operating principles compared
  • 2.3. Electric motor subtypes important for EVs
  • 2.4. EV motor benefits compared
  • 2.5. EV applications for the three motor types
  • 2.6. Motor choice for pure electric cars and vans
  • 2.7. Electric motors for other pure electric vehicles
  • 2.8. Technology choices - a closer look
    • 2.8.1. Let us get technical
    • 2.8.2. A deeper dive
    • 2.8.3. Spectrum of choice: benefits, challenges, uses
    • 2.8.4. PMAC vs BLDC technology
    • 2.8.5. Conductor format, optimisation, integration

3. ELEVEN IMPORTANT TRENDS IN EV MOTORS 2020-2030

  • 3.1. Overview
  • 3.2. Eleven trends
    • 3.2.1. Increasing percentage of vehicle cost
    • 3.2.2. Integration
    • 3.2.3. Multifunction
    • 3.2.4. Proliferation: vehicle has more motors
    • 3.2.5. Much bigger motors needed
    • 3.2.6. Vertical integration: Vehicle makers design their own motors
    • 3.2.7. Less cooling
    • 3.2.8. Voltage increase:
    • 3.2.9. New principles of electrical propulsion
    • 3.2.10. New materials: structural electronics
    • 3.2.11. Acquisitions and partnerships

4. MOTOR DESIGN ISSUES

  • 4.1. Trend to broad capability
  • 4.2. Dana Corporation - TM4
  • 4.3. Company experience and designer preferences
  • 4.4. Lessons from Tesla the automotive market leader
    • 4.4.1. Overview
    • 4.4.2. Trying to catch Tesla
    • 4.4.3. Tesla 3 Permanent Magnet Switched Reluctance Motor
    • 4.4.4. Motor design advice from Tesla
  • 4.5. Progress with switched reluctance
    • 4.5.1. Patent analysis
    • 4.5.2. Visedo synchronous reluctance assistant
    • 4.5.3. Advanced Electric Machines
    • 4.5.4. Eco Motor Works Canada
    • 4.5.5. Nidec Japan
  • 4.6. EV induction motor advances
    • 4.6.1. CCE Thyssen Krupp
    • 4.6.2. Tesla improves induction motors
  • 4.7. 48V hybrid vehicles: very large motor market emerging
    • 4.7.1. Basic 48V mild hybrid: cleverer motor, stronger battery are key
    • 4.7.2. Examples and timeline for cars
    • 4.7.3. Ongoing incremental improvements at modest cost
    • 4.7.4. Functions vs architectures
    • 4.7.5. 48V full hybrid can be primitive or maximum benefit
    • 4.7.6. Continental
    • 4.7.7. Eaton 48V full hybrid truck
    • 4.7.8. Mercedes integrated starter generator ISG mild hybrid
    • 4.7.9. Audi
    • 4.7.10. Bentley
    • 4.7.11. Jaguar Land Rover
    • 4.7.12. Schaeffler
    • 4.7.13. Valeo, Hyundai Mobis, Delphi, Tenneco, Bosch, IFEVS

5. AXIAL FLUX FOR HIGH POWER-TO-WEIGHT RATIO

  • 5.1. Chasing high power to weight ratio: history
  • 5.2. Patent analysis: axial flux motors
  • 5.3. Rolls Royce, Siemens, Yasa
  • 5.4. AVID EVO claim 10 kW/kg: lands $70 million of orders
  • 5.5. Equipmake reconfigured PM motor
  • 5.6. Magnax axial flux

6. IN-WHEEL MOTORS NOW POPULAR

  • 6.1. Overview
    • 6.1.1. Widespread adoption at last: BYD, Olli
    • 6.1.2. Protean 360 degree wheel
  • 6.2. Lightyear axial flux in-wheel
    • 6.2.1. Range sells cars
    • 6.2.2. Less battery with in-wheel motors
  • 6.3. Elaphe enabling 1000km on land
  • 6.4. Nidec Japan

7. HEAVY DUTY EV MOTORS OFF-ROAD

  • 7.1. Overview: Needs are different from on-road
  • 7.2. Takeuchi TB216H hybrid mini excavator
  • 7.3. All-electric Caterpillar excavator
  • 7.4. Hyundai electric excavator
  • 7.5. Asynchronous/ induction in mining vehicles
  • 7.6. What next?
  • 7.7. Military overview
  • 7.8. Vehicles by Balquon, Alke, Polaris, Columbia, Hummer, Green Wheel, Quantum FCT
  • 7.9. Larger military vehicles by BAE Systems, US DOD, Millenworks, Oshkosh
  • 7.10. Latest progress
    • 7.10.1. Autonomous off-road vehicles
    • 7.10.2. Otokar armored vehicle Turkey
    • 7.10.3. Nikola utility-task all-terrain vehicle USA
    • 7.10.4. TARDEC USA
    • 7.10.5. Arquus replacement for Humvee Sweden
    • 7.10.6. GE, DARPA and QinetiQ US UK
    • 7.10.7. GM Defense, Chevrolet Silverado USA
    • 7.10.8. Fuel cell main battle tanks?
  • 7.11. Electric boats and ships: a long history?
    • 7.11.1. Marine Market Segments
    • 7.11.2. Torqeedo: Moving Up to 100kW!
    • 7.11.3. Torqeedo Inboards and Outboards
    • 7.11.4. Key Growth Market: C&I Vessels
    • 7.11.5. Focus of emissions regulation
    • 7.11.6. Emission control areas (ECA)
    • 7.11.7. Unprecedented global cap on Sulphur
    • 7.11.8. World's First Pure Electric Container Ship

8. MOTOR CONTROL TECHNOLOGY

  • 8.1. Overview
  • 8.2. Major trends
  • 8.3. Direct drive or transmission
  • 8.4. View of Ultimate Transmissions
  • 8.5. Power semiconductors are key
  • 8.6. Examples
  • 8.7. Proliferation drives simplification
    • 8.7.1. Elimination of motor control
    • 8.7.2. Shared components: University of Berlin, Infineon
    • 8.7.3. Bidirectional Charge- and Traction-System (BCTS) Continental
  • 8.8. Future 48V mild hybrid motor controllers: TT/ AB Microelectronics