特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
926561

農業用EV (電動輸送機器) ・ロボティクスの世界市場:2020-2030年

Electric Vehicles and Robotics in Agriculture 2020-2030

出版日: | 発行: IDTechEx Ltd. | ページ情報: 英文 215 Slides | 納期: 即日から翌営業日

価格
価格は税抜き表示となります
農業用EV (電動輸送機器) ・ロボティクスの世界市場:2020-2030年
出版日: 2020年02月26日
発行: IDTechEx Ltd.
ページ情報: 英文 215 Slides
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

世界の農業用EV (電動輸送機器) およびロボティクスの市場は2030年には30億ドルを超える規模に成長すると予測されています。

当レポートでは、世界の農業・林業・芝管理におけるEV (電動輸送機器) およびロボティクスの市場を調査し、農業における課題、各カテゴリーにおける主要技術・主要機器・主要企業の動向、農業用EVの販売価格、販売台数、市場規模の推移と予測などをまとめています。

第1章 エグゼクティブサマリー・総論

第2章 イントロダクション

  • 農業の課題
  • ニーズと排出
  • 排出規制:ピュア電気機器の推進
  • 農業における温室と局所排出
  • 極端な水不足
  • 人口の増加と食料需要の増加
  • 農業:地域別
  • 主な収穫量:横ばい
  • 農業従事者の高齢化と都市への移動
  • 垂直農法を含む屋内農業の事例
  • 農業用EVのパワートレインの動向
  • LPWAN・IOT:EVおよび資産

第3章 市場機会

  • 英国からの見解
  • 日本からの見解
  • 農業機械のエコノミクス
  • 小型・低速・安価なロボットへの移行
  • 農業用ロボティクスと超高精度性
  • ビジネスモデル

第4章 農業・林業・芝用EV (電動輸送機器)

  • 概要:ドローン・陸上EV・スワーミング
  • 小型・低速・安価なロボットのスワーミングの移行
  • スワーミングロボット:陸上・空域
    • SAGA・SwarmFarm
  • 低コスト標準ソフトウェア:DroneAG
  • ホッピングドローン:Crop Hopper
  • 農業用陸上EV:概要
  • 芝整備用ロボット
  • 電気ロボット除草機:FarmWise・Naioなど
  • トラクター
    • 概要
    • Autonxt
    • Belarus Tractors
    • CNH Industrial
    • Farmtrac
    • Fendt (AGCO)
    • John Deere
    • STW
  • 種まき機
    • AGCO (Fendt) Xaver
  • 運搬装置
    • Alke
    • Nelson Mandela University
  • 林業・芝用
    • 概要
    • 林業:Logset・Sennebogen

第5章 実現技術

  • 主要7技術
  • トランクションモーター
  • 電池・スーパーコンデンサー

第6章 農業向けゼロ排出マイクログリッド

  • 充電方法
  • ソーラー vs ディーゼル:コスト分析
  • University of Sydney・Tesla
  • 可搬式ソーラー発電機セット
  • ソーラー + 電池によるマイクログリッド
  • ゼロ排出マイクログリッド:ソーラー・水力・風力、など

第7章 農業用自動車両

  • 農業の自動化:用途別
  • 市場・技術の対応度:農業活動別
  • 無人トラクター:AGCO・ATC・クボタ・ヤンマー・Kinze・CNH
  • ロボット果実収穫機
  • ロボット超精密除草

第8章 自動技術:LIDAR・レーダーなど

  • 自動コンポーネント・統合
  • Lidar
  • レーダー
  • AIソフトウェア・コンピューティングプラットフォーム
目次

Title:
Electric Vehicles and Robotics in Agriculture 2020-2030
Farming, forestry, robotics, hybrid, pure electric.

Fast growing market will pass $3 billion before 2030.

The new 215 page report, "Electric Vehicles and Robotics in Agriculture 2020-2030" is unique in its breadth and depth. It embraces farming, forestry and turf care in the form of robotics, some initially with diesel vehicles. Mostly however, hybrid and pure electric agricultural vehicles are covered, mostly not robotic as yet.

There is no nostalgia from the past or rambling text, the results of the research being presented mainly in new infograms, graphs and timelines all focussed on the present, including much news from 2020, and future to 2030. Grasp the challenges of this industry from Japan and China to the UK and USA and the remarkable new technologies and systems approaches being adopted and what comes next.

This report is intended to assist all in the value chains of the agricultural sector in the wide sense of including turf care and forestry. Its topic is electrification and robotics because most of the time the two go together and their effect on this industry is pivotal. The up-to-date interviews, analysis and forecasts were prepared by globe-trotting, multi-lingual IDTechEx analysts at PhD level. The depth is unprecedented but it is presented without equations, the emphasis being commercial and societal impact.

The 34 page Executive Summary and Conclusions is sufficient for those in a hurry, with a critical appraisal listing 14 forces on the industry, seven reasons for going electric being compared, two infograms of the farm of the future, detail on main trends such as precision and ultra-precision farming, 18 primary conclusions brought alive with tables and graphics, adoption timelines, patent trend graph. See 16 categories forecasted by units, unit price and market value 2020-2030.

The Introduction then looks at problems, needs, emissions, water shortage, food demand increase and change in mix, regional differences in crops and approaches, crop yield and farmer age, wage and tractor purchasing trends. Here is the electric vehicle powertrain choice emerging and types becoming favoured in agriculture all being mainly in pie charts, graphs, tables and infograms.

Chapter 3 concerns Opportunities. See the UK compared with Japan, the economics of agricultural machines, the interest in small, even swarming robots in fields and precision forms indoors. The value chain and robotics as a service are analysed.

Chapter 5 brings it alive with over 70 organisations making or developing electric and robotic vehicles for agriculture, forestry, turf electric vehicles compared. Specific comparisons include lawnmowing robots and weeding robots for farms, for example. Electric tractors are a particular focus with seven illustrated case studies. Planters, transporters and forestry are also illustrates and there are critical comparisons throughout.

Chapter 6 scopes the six key enabling technologies with the seventh - autonomy - being the subject of chapter 7. "Electric Vehicles and Robotics in Agriculture 2020-2030" will be the reference book of this industry, updates being regularly incorporated as the subject is now changing rapidly.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Primary conclusions: where we are headed
  • 1.3. Why we need electric agricultural vehicles
  • 1.4. Farm of the future arriving now
  • 1.5. Trends in types of farming
  • 1.6. Primary conclusions: impediments to change
  • 1.7. Primary conclusions: industrial trends EV and robotic
  • 1.8. Primary conclusions: regional
  • 1.9. Primary conclusions: technical
  • 1.10. Primary conclusions: agricultural EV adoption
  • 1.11. Patent analysis
  • 1.12. Market forecasts agriculture electric vehicles 2020-2030 - number thousand
  • 1.13. Market forecasts agriculture electric vehicles 2020-2030 - unit price $ thousand
  • 1.14. Market forecasts agriculture electric vehicles 2020-2030 - market value $ billion

2. INTRODUCTION

  • 2.1. The problem with agriculture
  • 2.2. Needs and emissions
  • 2.3. Emission push for pure electric equipment
  • 2.4. Greenhouse and local emissions in agriculture
  • 2.5. Extreme water shortage
  • 2.6. Growing population and growing demand for food
  • 2.7. Agriculture by region
  • 2.8. Major crop yields are plateauing
  • 2.9. Aging farmer population and urban migration
  • 2.10. The case for indoor farming including vertical farming
    • 2.10.1. Challenges in vertical farming
    • 2.10.2. Indoor farming robotics experiments and concepts
  • 2.11. Powertrain trends for electric vehicles in agriculture
  • 2.12. LPWAN and IOT to EVs and assets

3. OPPORTUNITIES

  • 3.1. View from the UK
  • 3.2. View from Japan
  • 3.3. Economics of agricultural machines
  • 3.4. Transition towards to swarms of small, slow, cheap robots
  • 3.5. Agricultural robotics and ultra precision = value chain upheaval
  • 3.6. Business models between RaaS and equipment sales

4. AGRICULTURE, FORESTRY, TURF ELECTRIC VEHICLES IN ACTION

  • 4.1. Overview: drones, land EVs and swarming
  • 4.2. Transition to swarms of small, slow, cheap robots
  • 4.3. Swarming robots: land and air
    • 4.3.1. SAGA and SwarmFarm
  • 4.4. Low cost standard software: DroneAG
  • 4.5. Hopping drones: Crop Hopper
  • 4.6. Land based EVs for agriculture: Overview
  • 4.7. Turf care robots
  • 4.8. Electric robot weeders: FarmWise, Naio etc
  • 4.9. Tractors
    • 4.9.1. Overview
    • 4.9.2. Autonxt
    • 4.9.3. Belarus Tractors
    • 4.9.4. CNH Industrial
    • 4.9.5. Farmtrac
    • 4.9.6. Fendt (AGCO)
    • 4.9.7. John Deere
    • 4.9.8. STW
  • 4.10. Planters
    • 4.10.1. AGCO (Fendt) Xaver
  • 4.11. Transporters
    • 4.11.1. Alke
    • 4.11.2. Nelson Mandela University
  • 4.12. Forestry and turf
    • 4.12.1. Overview
    • 4.12.2. Forestry: Logset, Sennebogen

5. ENABLING TECHNOLOGIES

  • 5.1. Seven key EV enabling technologies for agricultural EVs
  • 5.2. Traction motors
    • 5.2.1. Overview
    • 5.2.2. Choices of motor position
  • 5.3. Batteries and supercapacitors
    • 5.3.1. Overview
    • 5.3.2. Future W/kg vs Wh/kg 2020-2030
    • 5.3.3. Energy density 2020-2030
    • 5.3.4. Li-ion battery cost (industrial) $/kWh) 2005-2030

6. ZERO EMISSION MICROGRIDS FOR AGRICULTURE

  • 6.1. How to charge the vehicles: start with solar for zero emission
  • 6.2. Solar vs diesel cost analysis
  • 6.3. Solar bodywork: agricultural vehicles University of Sydney, Tesla
  • 6.4. Mobile solar gensets
  • 6.5. Envision Solar transportable solar charger tracks the sun
  • 6.6. Anatomy of a typical solar + battery microgrid
  • 6.7. Zero emission microgrids: solar, water, wind reinvented
    • 6.7.1. Overview
    • 6.7.2. New options beyond solar: relocatable, much less intermittent
    • 6.7.3. Open tide "tide stream" power options mimic wind power options
    • 6.7.4. Comparison of off-grid technology options
    • 6.7.5. New power generating technology kVA comparison
    • 6.7.6. Airborne Wind Energy developers
    • 6.7.7. Why AWE may be better than a conventional wind turbine
    • 6.7.8. eWind specifically targets AWE for farms
    • 6.7.9. Open sea wave power technologies for aquaculture

7. AUTONOMOUS VEHICLES IN AGRICULTURE

  • 7.1. Agriculture autonomy by application
  • 7.2. Market and technology readiness by agricultural activity
  • 7.3. Driverless tractors: AGCO, ATC, Kubota, Yanmar, Kinze, CNH
  • 7.4. Robotic fresh fruit harvesting
  • 7.5. Robotic ultra precision weeding

8. AUTONOMY TECHNOLOGY: LIDAR, RADAR ETC.

  • 8.1. Autonomy components and integration
  • 8.2. Lidars
  • 8.3. Radars
  • 8.4. AI software and computing platform
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.