株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ロボットシャトルおよび自動運転バスの世界市場:2020年~2040年

Robot Shuttles and Autonomous Buses 2020-2040

発行 IDTechEx Ltd. 商品コード 926269
出版日 ページ情報 英文 365 Pages
納期: 即日から翌営業日
価格
ロボットシャトルおよび自動運転バスの世界市場:2020年~2040年 Robot Shuttles and Autonomous Buses 2020-2040
出版日: 2020年02月21日 ページ情報: 英文 365 Pages
概要

ロボットシャトルおよび自動運転バスの世界市場は、2040年までに180億米ドルを超える規模に成長すると予測されています。

当レポートでは、ロボットシャトルおよび自動運転バス市場について調査し、ロボットシャトルのプラス面とマイナス面、世界15ヵ国で稼働している36タイプのロボットシャトル、ロボットシャトル技術とその課題、自動運転技術、およびコストなどについて分析しています。

第1章 エグゼクティブサマリー・結論

第2章 イントロダクション

  • バスおよびロボットシャトルの比較
  • 世界におけるバスの利用人数:種類別
  • 維持管理費を抑えるためのピュア電気バス
  • 世界の乗用車販売予測:2020年~2040年
  • 第2世代ロボットシャトル
  • Michigan Mobility Challenge
  • テキサス州におけるトライアル
  • 日本におけるトライアル
  • Einride Sweden

第3章 稼働中のロボットシャトル:15ヶ国における37タイプ

  • 2getthere オランダ
  • 5GX shuttle SKT 韓国
  • ANA collaboration 日本
  • Apollo Apolong: Baidu King Long 中国
  • Apple VWT6 米国
  • Astar Golden Dragon 中国
  • Aurrigo 英国
  • BlueSG/ Nanyang France シンガポール
  • Capri AECOM 英国
  • Coast Autonomous
  • DeLijn ベルギー
  • e-BiGO ドバイ
  • eGo Mover ドイツ
  • E-Palette トヨタ自動車
  • EZ10 EasyMile フランス
  • GACHA Sensible4 フィンランド
  • Heathrow pod ULTraFairwood 英国
  • Hino Poncho SB Drive 日本
  • IAV HEAT ドイツ
  • iCristal Torc Robotics 米国
  • KAMAZ shuttles ロシア
  • KTI Hyundai 韓国
  • LG 韓国
  • Myla: May Mobility 米国
  • Navya フランス
  • NEVS スウェーデン
  • Ohmio Automation ニュージーランド
  • Olli: Local Motors 米国
  • Optimus Ride 米国
  • Ridecell Auro 米国
  • Scania NXT - 第2世代ロボットシャトル スウェーデン
  • Sedric ドイツ
  • ST Engineering Land Systems シンガポール
  • Tony: Perrone Robotics 米国
  • Volkswagen ID Buzz ドイツ
  • Yutong Xiaoyu 中国
  • Zoox 米国

第4章 自動を超えたロボットシャトル技術

  • 概要
  • 対処している課題
  • ロボットシャトルにおける8つのイネーブリング技術はどのように10のプライマリーニーズを改善しているか?
  • 先進エレクトリクスによってディーゼルシャトル部品を90%削減する方法
  • 部品の相対的重要性における大きな変化
  • 将来の電気自動車パワートレイン:ロボットシャトルとの関連性
  • プラットフォームの進化
  • 電圧の動向
  • 典型的な純電気バス技術
  • 電気モーター
  • インホイールモーター
  • サイドウェイステアラブルホイール
  • インホイールモーターにおける360度ホイール:Protean and Productiv
  • 純電気バス向けエネルギーストレージ
  • 充電器の標準化:バス/トラック共通性
  • エネルギー自律型ビークル (EIEV)
  • Stella Vie はエネルギーポジティブなロボットシャトルへ道筋を示しているか?

第5章 自動運転技術

  • 概要
  • Lidar
  • Radar
  • AIソフトウェア・コンピューティングプラットフォーム
  • 高解像度 (HD) マップ

第6章 コスト・収入の分析

  • ロボットシャトルのコスト概要
目次

Title:
Robot Shuttles and Autonomous Buses 2020-2040
Robot shuttles multipurpose pods as new mode of travel.

Robot shuttles total market size will be over $18 billion by 2040.

Features:

  • Robot shuttles and precursors: manufacturer profiles 36
  • Robot shuttle manufacturer countries 15
  • Countries with deployments analysed 20
  • New infograms and forecasts/ graphs 64
  • Allied markets forecasted such as all buses, autonomous buses 7
  • Pages 360

IDTechEx has issued the first in-depth report on this called "Robot Shuttles and Autonomous Buses 2020-2040". Robot shuttles are an important new, reconfigurable form of transportation for goods and people that may even function as mobile offices, restaurants and more. It finds that the heart of the subject is upright, boxy, 8-20 person vehicles that are symmetrical so they never do a U turn. Small footprint, all-round vision, large doors, quiet, zero emission, they can go indoors and over piazzas and roads and are able perform many different tasks even in one day. Primarily intended for intensive urban use, they are gated to never exceed a determined speed, typically in the range 50-60 kph. It all adds up to a new form of transport backed by both huge companies like Toyota and Baidu and startups, one having raised one billion dollars for the task. Their trials explore many possible applications, from empowering the poor and disabled, to viably filing in gaps in the transportation network and replacing very underutilised vehicles such as school buses and private cars, reducing congestion and cost.

City road congestion will be eliminated by banning little used and weakly filled vehicles such as private cars and some school buses and introducing robot shuttles intensively used because they reconfigure in use, even go indoors, move sideways and arrive at your door.

The Executive Summary presents the dreams, 10 primary conclusions, the 36 models and their 20 projects, the number deployed by the leaders, the big differences from robotaxis covered in a sister IDTechEx report. It picks winners on IDTechEx criteria and forecasts 20 years ahead with prices tumbling for identified reasons and a tipping point of sales when full Level 5 autonomy can be widespread. The overall bus and the autonomous large bus market is forecasted. See graphs of the robot shuttle hardware business of tens of billions of dollars emerging and additionally the market for associated services.

The Introduction talks through the needs, issues, originality and impediments. Chapter 3 critically appraises the 36 robot shuttle companies/models in 15 countries in detail with partners named, stated objectives and dreams of participants with a profusion of photographs and drawings and SOFT reports of each.

Chapter 4 explains the huge advances in vehicle technology beyond autonomy that are ahead for robot shuttles and key to major success, from solar, supercapacitor, color changing and self-healing bodywork to smart glass, 360 degree wheels and much more. Autonomy makes the vehicle work but these new structures provide a profusion of income streams and business cases, long life and near zero maintenance. The analysis benchmarks other industries where they are ahead with these vehicle technologies.

Chapter 5 is a deep dive into the autonomy technologies including their integration, cost and power reduction ahead plus challenges. That includes detail about lidar, radar, cameras, sensor fusion and more. Chapter 6 is a detailed analysis of cost and income streams, with the most detailed forecasts and background data for buses, autonomous buses, robot shuttles and earning streams 2020-2040. It all makes the IDTechEx report, "Robot Shuttles and Autonomous Buses 2020-2040" exceptionally thorough, insightful and up-to-date, using new information and interviews by PhD level globetrotting analysts from IDTechEx interviewing in local languages.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.1. Purpose of this report
  • 1.2. SAE levels of automation in land vehicles
  • 1.2. SAE levels of automation in land vehicles
  • 1.3. Ten primary conclusions
    • 1.3.1. The dream and the basics for getting there
    • 1.3.2. Specification of a robot shuttle
    • 1.3.3. Very different from a robotaxi
    • 1.3.4. Smart shuttles will address megatrends in society
    • 1.3.5. Robot shuttle business cases from bans and subsidies
    • 1.3.6. Robot shuttle business cases from exceptional penetration of locations
    • 1.3.7. Intensive use business cases are compelling
    • 1.3.8. Campuses are not a quick win
    • 1.3.9. The robot shuttle opportunity cannot be addressed by adapting existing vehicles
    • 1.3.10. The leaders so far
    • 1.3.11. Upfront cost and other impediments
    • 1.3.12. Dramatic technical improvements are coming
  • 1.4. Two generations of robot shuttle
    • 1.4.1. Envisaged applications compared
    • 1.4.2. Second generation robot shuttle 2025-2040
  • 1.5. Robot shuttles: the good things
    • 1.5.1. Many benefits
    • 1.5.2. Building on the multi-purposing of the past
  • 1.6. Robot shuttles: the bad things
  • 1.7. Analysis of 36 robot shuttles and their dreams
  • 1.8. Geographical, size, deployment distribution of 36 robot shuttles
    • 1.8.1. Manufacture by country
    • 1.8.2. Manufacture by major region
    • 1.8.3. Designs by size
    • 1.8.4. Number deployed
  • 1.9. Timelines and forecasts
    • 1.9.1. Technology and launch roadmap 2020-2030
    • 1.9.2. Predicting when the robot shuttle has lower up-front price than a legal diesel midibus 2020-2040
    • 1.9.3. Hype 2018-2040
    • 1.9.4. Robot shuttles total market size in unit numbers thousand
    • 1.9.5. Robot shuttles total market size in US$ million
    • 1.9.6. Bus and shuttle global market number projection by size 2020-2040
    • 1.9.7. Bus and shuttle global market number projection by size by % 2020-2040: growth of shuttle and smaller buses
    • 1.9.8. Market share Level 4 and Level 5 autonomy in buses projection by size 2020-2040
    • 1.9.9. Global bus market by level of autonomy and projection by bus/ robot shuttle size 2018-2040
    • 1.9.10. Bus and robot shuttle total market projection by level of autonomy 2020-2030
    • 1.9.11. Cost projection of pure electric bus and shuttle (minus autonomy) 2020-2040
    • 1.9.12. Cost of autonomy 2020-2040
    • 1.9.13. Total 20-year market forecast for all bus/shuttle sizes and levels of autonomy
    • 1.9.14. Total 20-year market forecast (purpose-built shuttles and small-sized buses)
    • 1.9.15. Total 20-year market forecast (medium and large sized buses)
    • 1.9.16. Accumulated fleet size projected number 2020-2040
    • 1.9.17. Service revenue forecast $ billion 2020-2040
    • 1.9.18. Total revenue forecast $ billion 2020-2030

2. INTRODUCTION

  • 2.1. Bus and robot shuttle types compared
  • 2.2. Bus population worldwide by types 2020
  • 2.3. Pure electric buses for lowest TCO
  • 2.4. Peak car coming: global passenger car sales forecast 2020-2040 - moderate scenario (unit numbers)
  • 2.5. Background to robot shuttles
  • 2.6. Tough for robot shuttles to compete
  • 2.7. Second generation robot shuttles
  • 2.8. Michigan Mobility Challenge: seniors, disabled, veterans
  • 2.9. Texas trials: downtown circulator
  • 2.10. Trials in Japan
  • 2.11. Einride Sweden: not quite a robot shuttle

3. ROBOT SHUTTLES IN ACTION - 37 TYPES IN 15 COUNTRIES

  • 3.1. 2getthere Netherlands
    • 3.1.1. Business
    • 3.1.2. Product/Solution
  • 3.2. 5GX shuttle SKT Korea
  • 3.3. ANA collaboration Japan
  • 3.4. Apollo Apolong: Baidu King Long China
  • 3.5. Apple VWT6 USA
  • 3.6. Astar Golden Dragon China
  • 3.7. Aurrigo UK
  • 3.8. BlueSG/ Nanyang France Singapore
  • 3.9. Capri AECOM UK
  • 3.10. Coast Autonomous
  • 3.11. DeLijn Belgium
  • 3.12. e-BiGO Dubai
  • 3.13. eGo Mover Germany
  • 3.14. E-Palette Toyota
  • 3.15. EZ10 EasyMile France
  • 3.16. GACHA Sensible4 Finland
  • 3.17. Heathrow pod ULTraFairwood UK
  • 3.18. Hino Poncho SB Drive Japan
  • 3.19. IAV HEAT Germany
  • 3.20. iCristal Torc Robotics USA
  • 3.21. KAMAZ shuttles Russia
  • 3.22. KTI Hyundai Korea
  • 3.23. LG Korea
  • 3.24. Myla: May Mobility USA
  • 3.25. Navya France
  • 3.26. NEVS Sweden
  • 3.27. Ohmio Automation New Zealand
  • 3.28. Olli: Local Motors USA
  • 3.29. Optimus Ride USA
  • 3.30. Ridecell Auro USA
  • 3.31. Scania NXT - a second generation robot shuttle Sweden
  • 3.32. Sedric Germany
  • 3.33. ST Engineering Land Systems Singapore
  • 3.34. Tony: Perrone Robotics USA
  • 3.35. Volkswagen ID Buzz Germany
  • 3.36. Yutong Xiaoyu China
  • 3.37. Zoox USA

4. ROBOT SHUTTLE TECHNOLOGY BEYOND AUTONOMY

  • 4.1. Overview
  • 4.2. Challenges being addressed
  • 4.3. How eight key enabling technologies for robot shuttles are improving to serve 10 primary needs
  • 4.4. How to reduce diesel shuttle parts by 90% with advanced electrics
  • 4.5. Big change in relative importance of parts
  • 4.6. Future electric vehicle powertrains - relevance to robot shuttles
  • 4.7. Platform evolution
    • 4.7.1. Overview
    • 4.7.2. Toyota REE chassis: huge advances
  • 4.8. Voltage trends
  • 4.9. Typical pure electric bus technology
  • 4.10. Electric motors
    • 4.10.1. Overview
    • 4.10.2. Synchronous or asynchronous
    • 4.10.3. Operating principles for most EV uses
    • 4.10.4. Electric motor choices for robot shuttles and their current EV uses
    • 4.10.5. Electric motors for pure electric cars, vans: lessons for shuttle buses
    • 4.10.6. Company experience and designer preferences
    • 4.10.7. Motor material cost trends spell trouble
  • 4.11. In-wheel motors
  • 4.12. Sideways steerable wheels
  • 4.13. 360 degree wheels with in-wheel motor: Protean and Productiv
  • 4.14. Energy storage for pure electric buses
    • 4.14.1. Conventional buses see batteries shrink
    • 4.14.2. Robot shuttles stay battery hungry
    • 4.14.3. Even better batteries and supercapacitors a real prospect: future W/kg vs Wh/kg
    • 4.14.4. Location and protection of batteries
    • 4.14.5. Bus battery type, performance, future for 31 manufacturers
    • 4.14.6. Best of both worlds?
  • 4.15. Charger standardisation: bus/truck commonality
  • 4.16. Energy Independent Electric Vehicles EIEV
  • 4.17. Stella Vie showing the way to an energy positive robot shuttle?

5. AUTONOMY TECHNOLOGY

  • 5.1. Overview
    • 5.1.1. The automation levels in detail
    • 5.1.2. Functions of autonomous driving at different levels
    • 5.1.3. Future mobility scenarios: autonomous and shared
    • 5.1.4. Chess pieces: autonomous driving tasks
    • 5.1.5. Typical toolkit for autonomous cars
    • 5.1.6. Perception technologies and AI
    • 5.1.7. Anatomy of an autonomous vehicle
    • 5.1.8. Evolution of sensor suite from Level 1 to Level 5
    • 5.1.9. What is sensor fusion?
    • 5.1.10. Sensor fusion: past and future
  • 5.2. Lidars
    • 5.2.1. 3D Lidar: market segments & applications
    • 5.2.2. 3D Lidar: four important technology choices
    • 5.2.3. Comparison of Lidar, Radar, Camera & Ultrasonic sensors
    • 5.2.4. Automotive Lidar: SWOT analysis
    • 5.2.5. Emerging technology trends
    • 5.2.6. Comparison of TOF & FMCW Lidar
    • 5.2.7. Laser technology choices
    • 5.2.8. Comparison of common laser type & wavelength options
    • 5.2.9. Beam steering technology choices
    • 5.2.10. Comparison of common beam steering options
    • 5.2.11. Photodetector technology choices
    • 5.2.12. Comparison of common photodetectors & materials
    • 5.2.13. Mechanical Lidar players, rotating & non-rotating
    • 5.2.14. Micromechanical Lidar players, MEMS & other
    • 5.2.15. Pure solid-state Lidar players, OPA & liquid crystal
    • 5.2.16. Pure solid-state Lidar players, 3D flash
    • 5.2.17. Players by technology & funding secured
    • 5.2.18. Average Lidar cost per vehicle by technology
  • 5.3. Radars
    • 5.3.1. Why are radars essential to ADAS and autonomy?
    • 5.3.2. Towards ADAS and autonomous driving: increasing radar use
    • 5.3.3. SRR, MRR and LRR: different functions
    • 5.3.4. Radar: which parameters limit the achievable KPIs
    • 5.3.5. Towards the radar of the future
    • 5.3.6. Evolution of semiconductor technology in automotive radar
    • 5.3.7. Benchmarking of semiconductor technologies for mmwave radars
    • 5.3.8. Many chip makers are on-board
    • 5.3.9. Function integration trends: towards true radar-in-a-chip
    • 5.3.10. Evolution of radar chips towards all-in-one designs
    • 5.3.11. Board trends: from separate RF board to hybrid to full package integration?
    • 5.3.12. The evolving role of the automotive radar towards full 360degree imaging
    • 5.3.13. AI trend: moving beyond just presence detection
    • 5.3.14. Other trends: increasing range, angular and elevation resolution
    • 5.3.15. Radar data: challenges of spare point cloud
    • 5.3.16. Data fusion challenge: mismatch in point cloud densities
    • 5.3.17. Training neutral networks on radar data: the labelling challenge
    • 5.3.18. Automatic data labelling: early fusion of camera, lidar and radar data
  • 5.4. AI software and computing platform
    • 5.4.1. Terminologies explained: AI, machine learning, artificial neural networks, deep neural networks
    • 5.4.2. Artificial intelligence: waves of development
    • 5.4.3. Classical method: feature descriptors
    • 5.4.4. Typical image detection deep neutral network
    • 5.4.5. Algorithm training process in a single layer
    • 5.4.6. Towards deep learning by deepening the neutral network
    • 5.4.7. The main varieties of deep learning approaches explained
    • 5.4.8. There is no single AI solution to autonomous driving
    • 5.4.9. Application of AI to autonomous driving
    • 5.4.10. End-to-end deep learning vs classical approach
    • 5.4.11. Imitation learning for trajectory prediction: Valeo (1)
    • 5.4.12. Imitation learning for trajectory prediction: Valeo (2)
    • 5.4.13. Hybrid AI for Level 4/5 automation
    • 5.4.14. Hybrid AI for sensor fusion
    • 5.4.15. Hybrid AI for motion planning
    • 5.4.16. Autonomous driving requires different validation system
    • 5.4.17. Validation of deep learning system?
    • 5.4.18. The vulnerable road user challenge in city traffic
    • 5.4.19. Multi-layered security needed for vehicle system
  • 5.5. High-definition (HD) map
    • 5.5.1. Lane models: uses and shortcomings
    • 5.5.2. Localization: absolute vs relative
    • 5.5.3. HD mapping assets: from ADAS map to full maps for level-5 autonomy
    • 5.5.4. Many layers of an HD map for autonomous driving
    • 5.5.5. HD map as a service
    • 5.5.6. Who are the players?
    • 5.5.7. Why Vehicle-to-everything (V2X) is important for future autonomous vehicles
    • 5.5.8. Use cases of 5G NR C-V2X for autonomous driving

6. COST AND INCOME ANALYSIS

  • 6.1. Robot shuttle cost overview 2018-2040
    • 6.1.1. Cost and price overview
    • 6.1.2. The example of Japan
    • 6.1.3. Example of Germany: Robot shuttles will help eliminate subsidies