株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

ヘルスケア向け圧電ハーベスティングおよびセンシング:2019-2029年

Piezoelectric Harvesting and Sensing for Healthcare 2019-2029

発行 IDTechEx Ltd. 商品コード 759135
出版日 ページ情報 英文 109 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=110.91円で換算しております。
Back to Top
ヘルスケア向け圧電ハーベスティングおよびセンシング:2019-2029年 Piezoelectric Harvesting and Sensing for Healthcare 2019-2029
出版日: 2018年12月21日 ページ情報: 英文 109 Pages
概要

圧電センシングシステム市場の規模は、2029年に10億4,000万米ドルとなる見込みです。

当レポートでは、ヘルスケア向け圧電ハーベスティングおよびセンシング市場について調査し、世界のヘルスケア状況と特にセンサーにおけるエネルギーハーベスティングの必要性、作動形態・論理・化学・エレクトロニクスといった基本原理、主な実例、および研究・製品販売などに関わる組織のプロファイルなどを分析しています。

第1章 エグゼクティブサマリー・結論

第2章 イントロダクション

第3章 基本原理

  • 背景・定義
  • 圧電効果 - 直接
  • 基本方程式
  • 設計オプション
  • 分子モデル
  • デバイス作成・作動の原理
  • 無鉛および新しい形態の探求:酸化亜鉛
  • 振動圧電エネルギーハーベスター
  • エネルギーハーベスティングシステムの設計
  • Piezotronics
  • 圧電性高分子
  • 生分解性圧電センサー・ハーベスター:いくつかのオプションが登場

第4章 ヘルスケア向け圧電性ハーベスティングおよびセンシング:実例・教訓

  • ヘルスケアにおける低レベル機械的歪みのセンシング
  • 人体上・人体内・人体による圧電ハーベスター
  • 植込み型除細動器・ペースメーカー
  • 内耳
  • リストバンドヘルスモニター
  • 患者行動モニタリング
  • 使い捨て、インプラント、ウェアルブル向けコラーゲン圧電
  • ハンドコントローラー
  • ワイヤレスセンサー、IoT
  • MEMSハーベスティングの実例、ほか

第5章 ヘルスケア向け圧電に関心を持つ企業

  • Algra (スイス)
  • Arveni (フランス)
  • Fraunhofer IKTS (ドイツ)
  • Georgia Institute of Technology (米国)
  • Holst Centre/TNO (オランダ)
  • IMEC (ベルギー)
  • Imperial College London (英国)
  • Meggitt (米国)
  • Piezo.com (米国)
  • SILEX (スウェーデン)
  • Tyndall National Institute (アイルランド)
  • University of Princeton (米国)
目次

Title:
Piezoelectric Harvesting and Sensing for Healthcare 2019-2029
Harvesting & sensing: new research, applications, potential.

"In healthcare beyond imaging, expect a piezoelectric sensing systems market of $1.04 billion in 2029."

Healthcare Sensors: Piezoelectrics the New Gymnasts

Healthcare electronics is rapidly deploying for wellness, electroceuticals, intrusive medical procedures and more, powered by new technologies. Much of it is trending to diagnostics and treatment on the move and removing the need for the patient to perform procedures on time. Instruments become wearables including electronic skin patches and implants. The new IDTechEx report, "Piezoelectric Harvesting and Sensing for Healthcare 2019-2029" notes that preferably sensors should be self-powered, non-poisonous even on disposal and many need to be biocompatible and even biodegradable. We need to detect biology, vibration, force, acceleration, stress and linear movement and do imaging. Devices must reject bacteria and be useful in wearables and Internet of Things nodes. Preferably we must move to one device performing multiple tasks.

The report explains how new forms of piezoelectric will sense all those parameters and harvest creating electricity for sensors and more. That includes biosensors where the piezo senses the swelling of a biomolecule recognizing a target analyte. The most important form of self-powered (one material, two functions) piezo sensing is ultrasound imaging. The IDTechEx report, "Piezoelectric Harvesting and Sensing for Healthcare 2019-2029" looks at what comes next based on global travel and interviewing by its PhD level analysts in 2018 with continuous updates. IDTechEx has long staged conferences on these subjects and it shares privileged information in the report.

Piezo is already sold as a variety of self-powered sensors but there is more to come. Learn how it is reinvented as paint, print, layers on integrated circuits and in microelectromechanical systems MEMS chips. New applications for lead-based ceramics in new formats are revealed but polymer film and device layers come center stage. New piezotronics means piezoelectric doubles as semiconductor. Piezo-phototronics takes that up a notch. Light modulation enhances performance of photocells, sensitivity of photodetectors, efficiency of an LED, even strain-controlled LED emission directly images force/pressure distribution on the device with micrometer-resolution. The resulting piezopotential gated diodes, strain sensors, force/flow sensors and more revealed in the report promise to be invaluable in healthcare as will mapping pressure distribution on a surface. Integrate with photonic technologies for fast data transmission, processing and recording? Enable the development of highly intelligent human-machine interfaces? A major step towards on-chip recording of mechanical signals by optical means, yet another case of multi-functionality? Hospital pad, pillow and bolt sensors using piezos revealed in 2018 look promising but so do harvesters implanted on the heart and many other emerging capabilities discussed.

The IDTechEx report, "Piezoelectric Harvesting and Sensing for Healthcare 2019-2029" starts with an Executive Summary and Conclusions sufficient for those with limited time to grasp the emerging capabilities, issues and dreams with market forecasts for the piezoelectric harvesting and sensing systems, transducers and materials. Chapter 2 is the introduction giving the global healthcare situation and how energy harvesting and particularly sensors are increasingly vital. Piezoelectrics are at the heart of that. Chapter 4 Fundamentals goes deeper into the operating modes, theory, chemistry and electronics involved even embracing routes to biodegradability.

Chapter 4 reveals many examples of present and future piezoelectric harvesting and sensing in healthcare. It draws lessons from this. Finally Chapter 5 profiles 13 interesting organisations involved in researching, integrating and selling healthcare harvesting and sensor piezoelectric devices and materials

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition and scope
  • 1.2. Primary conclusions
  • 1.3. Prospective healthcare applications for piezotronics
  • 1.4. Piezoelectric harvesting and sensing systems
  • 1.5. Routes to success in piezoelectric energy harvesting
  • 1.6. Battery elimination
  • 1.7. Piezo devices applicational market split 2029
  • 1.8. Global medical sensors market size - 2019 & 2029
  • 1.9. Piezoelectric harvesters and sensors global market value $ billion 2019-2029
  • 1.10. Piezoelectric value chain, energy harvesting and sensing 2029 $ billion by segment
  • 1.11. Piezoelectric EH&S Systems, Transducers, Materials 2019- 2029 $ billion

2. INTRODUCTION

  • 2.1. Scope
  • 2.2. Global healthcare trend
  • 2.3. Global healthcare trend: disease, spend, regional differences
  • 2.4. Two major needs addressed in this report
  • 2.5. What is piezoelectric harvesting and sensing?
  • 2.6. Piezoelectric Advantages
  • 2.7. Manufacture: typical processes
  • 2.8. Printable gallium phosphate
  • 2.9. Modes of operation and standards
    • 2.9.1. Function
    • 2.9.2. Force
    • 2.9.3. Pressure
    • 2.9.4. Standards
  • 2.10. Benefits and challenges of piezoelectric harvesting
  • 2.11. Multifunctional piezoelectric devices: Novasentis Arkema Piezotech
  • 2.12. Some of the main areas of research in piezoelectrics for healthcare

3. FUNDAMENTALS

  • 3.1. Background and Definitions
  • 3.2. Piezo effect - direct
  • 3.3. Basic equations
  • 3.4. Design options
  • 3.5. Molecular models
  • 3.6. Principle of device creation and operation
  • 3.7. Quest for lead-free and new morphologies: zinc oxide
  • 3.8. Vibrational Piezoelectric Energy Harvesters
    • 3.8.1. Overview
    • 3.8.2. Challenges: the quest for power and acoustic bandwidth
    • 3.8.3. Research base: wide acoustic bandwidth piezo harvesting
    • 3.8.4. Parameters of piezoelectrics for vibration harvesting
  • 3.9. Energy harvesting system design
  • 3.10. Piezotronics
    • 3.10.1. Overview
    • 3.10.2. Mechanisms and devices
  • 3.11. Quest for lead-free and new morphologies: zinc oxide
  • 3.12. Piezoelectric polymers
    • 3.12.1. Overview
  • 3.13. Biodegradable piezoelectric sensors and harvester: several options emerging
    • 3.13.1. PLLA biodegradable sensors
    • 3.13.2. PVDF-DNA biodegradable harvesters

4. PIEZOELECTRIC HARVESTING AND SENSING IN HEALTHCARE: EXAMPLES AND LESSONS

  • 4.1. Sensing low level mechanical strain in healthcare
  • 4.2. Piezo harvesters on, in and by the human body
  • 4.3. Implanted defibrillators and pacemakers
  • 4.4. Inner ear
  • 4.5. Wrist health monitor
  • 4.6. Patient behaviour monitoring
  • 4.7. Collagen piezoelectric for disposables, implants, wearables
  • 4.8. Hand controllers
  • 4.9. Wireless sensors, IOT
  • 4.10. Examples of MEMS harvesting
  • 4.11. Progression of integration
  • 4.12. Piezoelectric, pyroelectric, triboelectric combined
  • 4.13. Piezoelectric with triboelectric
  • 4.14. Sensor definition and function
  • 4.15. Sensor requirements by power level
  • 4.16. Signal processing
  • 4.17. Relative advantages
  • 4.18. Multifunctional sensors
  • 4.19. Piezoelectric sensor limitations
  • 4.20. Static sensing
  • 4.21. Temperature effects
  • 4.22. Sensors of biological functions using piezotronics
  • 4.23. Piezoelectric pressure sensing
  • 4.24. Sensor switches
  • 4.25. Point of care biosensors for infectious diseases
    • 4.25.1. Needs
    • 4.25.2. Piezoelectrics in context for bioreceptor biosensors
    • 4.25.3. Piezoelectric bioreceptor biosensors in action
  • 4.26. Microphones Vesper
  • 4.27. Internet of Things healthcare market map

5. INTERESTING ORGANISATIONS IN HEALTHCARE PIEZOELECTRICS

  • 5.1. Algra Switzerland
  • 5.2. Arveni France
  • 5.3. Fraunhofer IKTS Germany
  • 5.4. Georgia Institute of Technology USA
  • 5.5. Holst Centre/TNO Netherlands
  • 5.6. IMEC Belgium
  • 5.7. Imperial College London UK
  • 5.8. Meggitt USA
  • 5.9. Piezo.com USA
  • 5.10. SILEX Sweden
  • 5.11. Tyndall National Institute Ireland
  • 5.12. University of Princeton USA
Back to Top