無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

構造用エレクトロニクス&エレクトリクスとしてのスマートマテリアル:2019-2029年

Smart Materials as Structural Electronics and Electrics 2019-2029

発行 IDTechEx Ltd. 商品コード 721790
出版日 ページ情報 英文 238 Slides
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=114.94円で換算しております。
Back to Top
構造用エレクトロニクス&エレクトリクスとしてのスマートマテリアル:2019-2029年 Smart Materials as Structural Electronics and Electrics 2019-2029
出版日: 2018年09月30日 ページ情報: 英文 238 Slides
概要

当レポートでは、構造用エレクトロニクス&エレクトリクスとしてのスマートマテリアルの市場を調査し、市場の定義と概要、構造用エレクトロニクスの発展の経緯と将来の展望、スマートマテリアルの機能・形態要件、主な製造技術の概要・特徴、技術開発動向、主要製品のプロファイル、企業・研究機関・大学による各種取り組みなどをまとめています。

第1章 エグゼクティブサマリー・総論

  • 定義
  • 本書の目的
  • 重要性
  • 実現技術
  • 課題
  • 市場規模
  • 新製品・技術のロードマップ

第2章 イントロダクション:経緯・定義・能力・展望

  • 構造用エレクトロニクスの発展の経緯

第3章 求められるスマートマテリアルの機能・形態

  • 概要
  • 機能・形態の合理性
  • 機能・形態:現在の選択肢

第4章 製造技術:リードするインモールドエレクトロニクス (IME)

  • IMEとは?
  • IMEプロセスとは
  • IME導電性インク要件
  • マテリアルポートフォリオの多様性
  • 機能性材料の幅の拡大
  • 用途・商業化に向けた進展・試作:概要
  • IME機能性材料サプライヤー
  • TactoTekのアプローチ:IME SEのリーダー

第5章 その他の製造技術:コンフォーマルプリンティング・MID・3DPE・噴霧など

  • 3D表面へのダイレクトプリント
    • Optomec Aerosol:市場リーダー
    • コンフォーマルプリンティングの例:
      • Harvard University
      • University of Illinois at Urbana Champaign
      • Optomec
    • Pulse Electronics
    • GKN・Boeing:787用ヒーター
    • Nano Dimension (イスラエル)・Ceradrop (フランス)
    • Neotech・Novacentrix・nScrypt
  • 成形回路部品 (MID):LDS
    • 概要
    • MID・LDS:LPKF, Festo
    • IMEにおけるLDSの各種用途
    • MID - LPKF・Molexの例
    • MID - TRWの例
  • プリンテッドPCB
    • Agナノ粒子インクを用いた高速PCB試作に向けた進歩
    • プリンテッドPCB:新規参入企業
  • 転写:テストストリップ印刷とラミネーション
  • 3Dプリンテッドエレクトロニクス
    • 概要
    • トヨタ
    • Aconity3D
    • Functionalize
    • Harvard University
    • Princeton University
    • Nascent Objects
    • AgIC
    • Voltera
    • Cartesian
    • Botfactory
    • Voxel8
    • 製造オプションの比較

第6章 大規模SE:自動車・航空機・船舶・建造物・道路

  • 概要
  • 自動車
    • 耐荷重スーパーキャパシター構造体
    • Imperial College London
    • Queensland University of Technology
    • Trinity College Dublin
    • Vanderbilt University
    • ZapGo
  • PV車体
    • 車体用先進薄膜PV
    • Sion Motors
    • IFEVS
    • EIEV
  • 発電タイヤ
    • Triboelectric Univ
    • Univ. Bolton
  • 航空機
    • ソーラー航空機の例:Sunstar
    • Sunseeker Duo
    • Solar Impulse
    • SolarShip
    • American Semiconductor:スマート機体・翼
    • Boeing 787 Dreamliner
    • Airbus:3Dプリント
    • Nervous system:NASA
    • Morphing wing:FlexFoil・NASA、など
  • ボート・船舶による大面積波力発電
    • EIEV船
    • 例:Okeanos Pearl
    • PlanetSolar・SolarLab
    • EIEV調査船、など
  • ビル・建造物
    • アクティブスマートガラス
    • Samsung OLEウィンドウ
    • 建物一体型PV (BIPV)
    • 太陽電池タイル
    • ソーラー温室
  • スマートブリッジ:例
  • スマートロード
    • スマートロードの潜在技術
    • 現在の道路研究プロジェクト:圧電モーションハーベスティング
    • ソーラー道路:Missouri Department of Transportation
    • ソーラー道路
    • Bouygues Colas
    • Pavenergy
    • TNO SolaRoad、など
目次

The new IDTechEx report, "Smart Materials as Structural Electronics and Electrics 2019-2029" is alone in giving the big picture about a new industry transforming the materials industry and creating many new billion dollar businesses making things previously impossible to make such as electric cars, boats and aircraft that never recharge and windows that make electricity and use it to darken according to need. Encompassing making dumb steel, plastic, glass and concrete smart, it reveals many gaps in the market, role models of success and future roadmaps for the technology. We even give a technical and market view of twenty years ahead.

The executive summary and conclusions has many new infographics and graphs concisely presenting the findings of the PhD level IDTechEx analysts that travel intensively and otherwise research this emerging topic. The introduction explains the historical evolution of this approach and gives a taster of the melodrama to come. For example, darkening your window in an aircraft is with us now but a complete airframe nervous system and more are being trialled. The following chapters 3.4 and 5 give a deep understanding of the main technologies and materials involved, now you can touch the interior trim of your car to adjust your seat and solar wings of a huge drone keep it in the upper atmosphere for months, soon years. From in mold electronics to 3D printed electronics what materials and processes are used, how will they improve and what materials will be needed? What new products are becoming possible? For example, the term massless power has been coined by making a car body into a load-bearing supercapacitor and/or photovoltaics at a lighter weight than the dumb steel that is replaced. Such technologies will create multi-billion dollar businesses but bankrupt laggards. Chapter 6 closely examines what will make the most money - structural electronics for large things - road vehicles, trains, boats, ships, aircraft, bridges buildings, roads and more. What new materials and structures arrive when. Gaps in the market? Current examples? Good and bad research programs? All is assessed.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Purpose of this report
  • 1.3. Significance
  • 1.4. Examples
    • 1.4.1. Reduce system weight, size, cost and improve functionality, reliability, life.
    • 1.4.2. Make new things possible
  • 1.5. Wide variety of enabling technologies
    • 1.5.1. In use
    • 1.5.2. Working well in laboratory and trials
    • 1.5.3. Later
  • 1.6. Much can be done with metal patterning on appropriate substrates
  • 1.7. Examples of organisations making the most commercially significant advances in structural electronics and electrics
  • 1.8. Challenges
  • 1.9. Market sizes
    • 1.9.1. Energy independent electric vehicles 2019-2039, mainly cars
    • 1.9.2. Solar road forecast $ billion
    • 1.9.3. Road sensing, non-solar harvesting, allied harvesting forecast
    • 1.9.4. Smart glass market $ million
    • 1.9.5. RFID sensor tags and systems $ million
  • 1.10. New product and technology roadmap 2019-2039

2. INTRODUCTION: HISTORY, DEFINITIONS, CAPABILITIES, DREAMS

  • 2.1. Progression to structural electronics
    • 2.1.1. Sequence
    • 2.1.2. 1900-1950: Components-in-a-box
    • 2.1.3. 1950-2016: PCBs in a box
    • 2.1.4. PCBs: multilayer, vias as heat pipes, load bearing
    • 2.1.5. Components and circuits shaped to fit into gaps: BAE Systems, Lola-Drayson, Within Technologies
    • 2.1.6. Examples of true structural electronics: Plastic Electronic, Smart Plastics Network
    • 2.1.7. Examples: Ford and T-ink
    • 2.1.8. Examples: Molex, VTT, Harvard University
    • 2.1.9. Examples: Hybrid structural-conventional: University of Texas at El Paso
    • 2.1.10. See the forest

3. FUNCTIONS AND FORMATS OF REQUIRED SMART MATERIALS

  • 3.1. Overview
    • 3.1.1. Huge materials opportunities
    • 3.1.2. Complex, evolving requirements, high added value
  • 3.2. Functions and formats rationale
  • 3.3. Functions and formats: current choices

4. MANUFACTURING: IN MOLD ELECTRONICS IME IN THE LEAD

  • 4.1. What is in-mould electronics?
    • 4.1.1. IME products have exceptional environmental tolerance
    • 4.1.2. Aircraft aerofoil flap with integral heater for de-icing using in-mold electronics
    • 4.1.3. IME: 3D friendly process for circuit making
    • 4.1.4. Related processes comparison IMD, IME, MID/LDS
  • 4.2. What is the in-mold electronic process?
    • 4.2.1. Comments on requirements
  • 4.3. Conductive ink requirements for IME
    • 4.3.1. New ink requirements: stretchability
    • 4.3.2. New ink requirements: portfolio approach
  • 4.4. Diversity of material portfolio
    • 4.4.1. New ink requirements: surviving heat stress
    • 4.4.2. New ink requirements: stability
    • 4.4.3. All materials in the stack must be reliable
    • 4.4.4. Design: general observations
  • 4.5. Expanding range of functional materials
    • 4.5.1. Stretchable carbon nanotube transparent conducting films
    • 4.5.2. Beyond IME conductive inks: adhesives
    • 4.5.3. Beyond conductive inks: thermoformed polymeric actuator?
  • 4.6. Overview of applications, commercialization progress, and prototypes
    • 4.6.1. In-mold electronic application: automotive
    • 4.6.2. White goods, medical and industrial control (HMI)
    • 4.6.3. Is IME commercial yet?
    • 4.6.4. First (ALMOST) success story: overhead console in cars
    • 4.6.5. Commercial products: wearable technology
    • 4.6.6. Automotive: direct heating of headlamp plastic covers
    • 4.6.7. Automotive: human machine interfaces
    • 4.6.8. White goods: human machine interfaces
    • 4.6.9. Mobile phone storage
  • 4.7. IME functional material suppliers
    • 4.7.1. Emerging value chain
    • 4.7.2. Stretchable conductive ink suppliers multiply
    • 4.7.3. IME conductive ink suppliers multiply
    • 4.7.4. IME with functional films made with evaporated lines
  • 4.8. Approach of TactoTek: the IME SE leader
    • 4.8.1. TactoTek Profile

5. OTHER MANUFACTURING: CONFORMAL PRINTING, MID, 3DPE, SPRAYING ETC

  • 5.1. Printing directly on a 3D surface
    • 5.1.1. Optomec Aerosol: market leader
    • 5.1.2. Conformal printing examples: Harvard University, University of Illinois at Urbana Champaign, Optomec
    • 5.1.3. Pulse Electronics
    • 5.1.4. Spraying leading edge 787 heater GKN, Boeing
    • 5.1.5. Nano Dimension Israel, Ceradrop France
    • 5.1.6. Neotech, Novacentrix, nScrypt
  • 5.2. Molded Interconnect Devices: Laser Direct Structuring
    • 5.2.1. Overview
    • 5.2.2. MID and LDS: LPKF, Festo
    • 5.2.3. Applications of laser direct structuring in IME
    • 5.2.4. MID - LPKF and Molex examples
    • 5.2.5. MID - TRW example
  • 5.3. Genuinely Printed PCB
    • 5.3.1. Progress towards rapid PCB prototyping using Ag nanoparticle inks
    • 5.3.2. Printed PCB: Newcomers
  • 5.4. Transfer printing: printing test strips & using lamination to compete with IME
  • 5.5. 3D printed electronics
    • 5.5.1. Overview
    • 5.5.2. Toyota Japan
    • 5.5.3. Aconity3D Germany, USA
    • 5.5.4. Functionalise USA
    • 5.5.5. Harvard University
    • 5.5.6. Princeton University
    • 5.5.7. Nascent Objects
    • 5.5.8. aGic Japan, Voltera Canada
    • 5.5.9. Cartesian USA, Botfactory USA
    • 5.5.10. Voxel8
    • 5.5.11. Manufacturing options compared

6. LARGE SE: VEHICLES, AIRCRAFT, SHIPS, BUILDINGS, ROADS

  • 6.1. Overview
    • 6.1.1. Road vehicles
    • 6.1.2. Solar trains, aircraft
    • 6.1.3. EH transducer principles and materials
    • 6.1.4. Best photovoltaic research-cell efficiencies
    • 6.1.5. Multipurpose vehicle bodywork: Daimler dream
    • 6.1.6. Self Healing
  • 6.2. Vehicles
    • 6.2.1. Load bearing supercapacitors replace steel bodywork
    • 6.2.2. Dream for supercapacitors and their derivatives: other planned benefits
    • 6.2.3. Imperial College London supercapacitor bodywork
    • 6.2.4. Queensland University of Technology Australia, Rice University USA
    • 6.2.5. Trinity College Dublin Ireland
    • 6.2.6. Vanderbilt University USA
    • 6.2.7. ZapGo UK
  • 6.3. Photovoltaic vehicle bodywork
    • 6.3.1. Parameters of 17 types
    • 6.3.2. Advanced thin film PV on car bodywork
    • 6.3.3. Sion Motors Germany, IFEVS Italy EIEV
  • 6.4. Electricity generating tires
    • 6.4.1. Triboelectric Univ Wisconsin Madison
    • 6.4.2. Triboelectric tires low power only? Georgiatech
    • 6.4.3. Dream of piezoelectric tires: Univ. Bolton UK
  • 6.5. Aircraft
    • 6.5.1. Solar aircraft examples: Sunstar
    • 6.5.2. Sunseeker Duo USA
    • 6.5.3. Solar Impulse Switzerland
    • 6.5.4. SolarShip Canada
    • 6.5.5. American Semiconductor: smart fuselage and wings
    • 6.5.6. Boeing 787 Dreamliner tinted windows
    • 6.5.7. Airbus concept 3D printed plane
    • 6.5.8. Nervous system: NASA
    • 6.5.9. Morphing wing: FlexFoil and NASA
    • 6.5.10. Conformal Load-Bearing Antenna Structure CLAS for aircraft
    • 6.5.11. Smart Composite Actuator SCA for aircraft
    • 6.5.12. Slotted Waveguide Antenna Stiffened Structure SWASS for aircraft
  • 6.6. Boats, ships structural wide area wave power
    • 6.6.1. EIEV ships
    • 6.6.2. Example: 'Okeanos Pearl' New Zealand
    • 6.6.3. PlanetSolar, SolarLab Germany
    • 6.6.4. Research boat EIEV France
    • 6.6.5. IDTechEx concept: 3MW energy independent ship
    • 6.6.6. MW on the sea using flexible triboelectrics
    • 6.6.7. Triboelectric harvesting device timeline 2019-2039 with approximate power
    • 6.6.8. The DEG dream for wave power: Delft University Netherlands SBM Offshore UK
    • 6.6.9. University of Dallas Twistron electrostatic harvester for sails
  • 6.7. Buildings
    • 6.7.1. Buildings have a major impact on city energy consumption
    • 6.7.2. Active smart glass in buildings
    • 6.7.3. Active and passive glass darkening materials
    • 6.7.4. Samsung OLED window
    • 6.7.5. Building integrated photovoltaics BIPV
    • 6.7.6. Solar house tiles with battery
    • 6.7.7. Three in one windows NREL
    • 6.7.8. Building integrated photovoltaic thermal (BIPVT)
    • 6.7.9. Solar greenhouses generate electricity and optimally grow crops UC Santa Cruz
    • 6.7.10. Solar greenhouses: University of Colorado Boulder 2018
  • 6.8. Smart bridges: examples
  • 6.9. Smart roads
    • 6.9.1. Overview: road material becomes smart
    • 6.9.2. Realistic technology potential for smart roads
    • 6.9.3. Deicing and snow removal risks disappear with self-powered, automated road heating
    • 6.9.4. Current road research projects: piezoelectric motion harvesting
    • 6.9.5. Realistic solar roads, parking, paths, barriers overview
    • 6.9.6. Solar Roadways and Missouri Department of Transportation USA
    • 6.9.7. Solar roadway powering interactive lighting: Solar Roadways USA
    • 6.9.8. Solar Roadways structure and Sandpoint projects
    • 6.9.9. Bouygues Colas France
    • 6.9.10. Solar road Pavenergy China
    • 6.9.11. TNO SolaRoad Netherlands
    • 6.9.12. Japan: trials and concepts: Misawa and others
    • 6.9.13. Gantry vs road surface: Korea, China
    • 6.9.14. Solar wind/ sound barriers: Eindhoven University of Technology
    • 6.9.15. Smart cement mixtures could turn buildings into batteries
Back to Top