特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
716063

多機能複合材料の世界市場:技術・参入企業・成長予測:2019年~2029年

Multifunctional Composites 2019-2029: Technology, Players, Market Forecasts

出版日: | 発行: IDTechEx Ltd. | ページ情報: 英文 201 Pages | 納期: 即日から翌営業日

価格
価格は税抜き表示となります
多機能複合材料の世界市場:技術・参入企業・成長予測:2019年~2029年
出版日: 2019年04月30日
発行: IDTechEx Ltd.
ページ情報: 英文 201 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、世界の多機能複合材料の市場を調査し、市場の定義と概要、材料区分別の技術開発・イノベーションの動向、主要企業とその取り組み、各種用途・応用製品、10カ年の市場成長予測、主要企業のプロファイルなどをまとめています。

第1章 エグゼクティブサマリー

第2章 イントロダクション:繊維強化ポリマー

  • イントロダクション:複合材料
  • 複合材料の組み合わせ
  • FRP部品製造の各段階におけるイノベーション
  • 主なCFR企業
  • 世界の炭素繊維市場の予測

第3章 機能性材料の組み入れ:ナノカーボンと金属化

  • FRP添加剤としてのナノカーボンの役割
  • ナノカーボン材料の複合材料への組み入れルート
  • ナノカーボン添加剤の各種タイプ:CNT
  • CNT市場と主要企業
  • CNTシートの動向・企業
  • ナノカーボン添加剤の各種タイプ:CNTヤーン
  • サイズ剤としてのナノカーボン
  • ナノカーボン添加剤の各種タイプ:グラフェン
  • ナノカーボン添加剤の各種タイプ:グラフェンプレートレット
  • 主要企業
  • イントロダクション:ポリマー複合材料へ金属の組み入れ
  • 組込み金属フォイル・メッシュ
  • 複合材料向け金属化繊維・織物:銅
  • 複合材料向け金属化繊維・織物:ニッケル
  • 金属ナノワイヤーの組み入れ

第4章 導電性・熱伝導率の強化

  • 導電性強化の主な推進因子
  • 導電性複合材料へのルート
  • 複合材料の静電気放電のための導入技術
  • 防雷
  • EMIシールド
  • 導電性強化のためのナノカーボン:CNT
  • 導電性強化のためのナノカーボン:グラフェン
  • 熱伝導率強化の用途:概要
  • 複合材料による除氷
  • 電気加熱式除氷
  • 電子機械式除氷
  • 熱機械式除氷
  • 市場予測:除氷複合材料、など

第5章 組込みセンサー

  • 複合材料の構造ヘルスモニタリング (SHM) 用組込みセンサー
  • 光ファイバーセンサー (FOS) の比較
  • FBGセンサーの進化
  • 分散型FOSの進化
  • 圧電組込みウエハとナノファイバー
  • NDT用組込み圧電トランデューサー
  • 連続真空モニタリング:航空宇宙部門のSHM向け
  • SHM向けプリンテッドセンサー
  • 組込みSHM用ナノカーボンセンサー
  • 航空宇宙部門とSHM
  • 風力タービンブレードとSHM
  • 石油・ガス部門向け複合材料センサー
  • 特許分析
  • 市場予測、など

第6章 エネルギー貯蔵・ハーベスティング

  • 組込みエネルギー貯蔵と多機能複合材料
  • イントロダクション:構造的エネルギー貯蔵
  • リチウムイオン組込み電池と複合材料
  • Formula Eから学ぶ教訓
  • 薄膜電池の活用
  • Stanford University:MES複合材料
  • 電極として利用可能な炭素繊維
  • 構造用複合材料電池の進化・現況
  • Chalmers University・KTH:被覆繊維
  • 構造用複合材料によるスーパーキャパシター:主要コンポーネント
  • Imperial College London:カーボンエアロゲル
  • Lamborghini Terzo Millennio:MIT research
  • BAE Systems:複合材料によるスーパーキャパシター・電池
  • IMDEA:構造用EDLC
  • 組込みエネルギー貯蔵:総論
  • エネルギーハーベスティング:イントロダクション
  • ソーラースキン
  • 組込み圧電ファイバー
  • 他の組込みハーベスター、など

第7章 適応反応メカニズム

  • イントロダクション
  • 用途と課題
  • モーフィング翼のタイムライン
  • ピエゾアクチュエーター材料
  • 形状記憶合金
  • 電場応答性高分子による複合材料
  • UV光反応
  • 曲げ・捻れカップリング、など

第8章 自己修復性複合材料

  • "自己修復性" 複合材料部品へのルート
  • 高速重合による自己修復性
  • 可逆性架橋剤による自己修復性、など

第9章 データ・パワー転送

  • イントロダクション
  • 表面波の利用
  • 被覆炭素繊維
  • 水平配向CNT
  • 組込み無線センサーネットワーク、など

第10章 複合材料部品の完全統合型3Dエレクトロニクスシステム

  • IMEとは
  • IME:回路製造の3Dフレンドリープロセス
  • 3Dプリンティング:機能性繊維
  • 3Dプリンティング:複合材料・組込みセンサー
  • 3Dプリンティング:構造用エレクトロニクス、など

第11章 企業プロファイル

  • Acellent Technologies
  • Continuous Composites
  • DexMat
  • Imperial College Composites Centre
  • Inca Fiber
  • N12 Technologies
  • Tortech Nano Fiber
目次

Fiber reinforced polymers have gained market maturity in numerous sectors and are forecast to maintain a consistent growth in both the medium and long term. This uptake is driven by their favourable blend of properties most notably being the lightweight mechanical performance.

The key next iteration for these products will be the concept of multifunctionality. This is the idea of making a structural part carry out additional role(s) beyond their current primary mechanical task. The added functionality can be diverse, and the emerging applications be outlined below.

This technical research was carried out through extensive primary research from IDTechEx analysts. For commercial or near-commercial technologies granular 10-year market forecasts are provided and company profiles of key emerging players are provided alongside this report. The overall market for smart composite material with embedded functionality is expected to exceed 5 kilotons by 2029.

image1

Enhanced thermal and electrical conductivity is already commercially employed and is gaining more traction. This report explores the many routes into enhanced conductivity most notably through the inclusion of nanocarbon (graphene and CNTs) or metallic additives, coatings, mats, and wires. The main drivers for thermal conductivity are de-icing, heated tooling, and thermal dissipation. Electrical conductivity is again driven by the transportation sector with lightning strike protection, EMI shielding, electrostatic coating, and complete circuitry the main applications.

Embedded sensors can provide real-time part monitoring both in-production and in-operation. Structural health monitoring is challenging for composite parts with the aim to detect delamination, cracks or any other sign of mechanical fatigue. There are numerous competitive technologies in this field including a range of fiber optic sensors (FOS), piezoelectric wafers, and more. The obvious application is again in aerospace and defense but the role in Oil & Gas, overwrapped pressure vessels, and more should not be overlooked and are outlined in this report.

Energy harvesting and storage is a key area in an increasingly electrified transport sector. There has been minimal success in truly embedding energy harvesting devices with the continued emergence of solar skins deployed on the surface. However, energy storage is an important multifunctional development. IDTechEx believe this will go through two stages: the first-stage is embedding conventional Li-ion batteries within the composite laminar structures and the final goal is to have the composite act as a battery or supercapacitor itself. It is this second stage that has coined the termed "massless energy" where there are the greatest long-term opportunities.

Data and power transmission carried out by the composite part could remove the need for wires or signals and provide both robust and lightweight solutions. There are numerous attempts to achieve this utilising very diverse technology approaches ranging from the utilisation of electrically insulative coatings on carbon fibers to propagating surface waves between different dielectric layers.

Adaptive response mechanisms with embedded actuators is not a new concept with the idea or morphing or shape-changing wings over a century old. However, new innovations and deployment tests in both active and passive actuation makes this idea all the closer. Self-healing does not enable any electric functionality but is highly explored within the research community and sought after by end-users. Autonomic vs Nonautonomic and extrinsic vs intrinsic strategies and advancements for fiber reinforced polymers are outlined and analysed.

Fully embedded circuitry and electronic componentry can be perceived as a future end-goal for this field. This report looks at the different routes into enabling this utilising both in-mold electronics and 3D printing.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Introduction to multifunctional polymer composites
  • 1.2. Status of multifunctional composites by application
  • 1.3. What is structural electronics?
  • 1.4. Multifunctional composite forecasts
  • 1.5. What is the end goal?

2. INTRODUCTION TO FIBER REINFORCED POLYMERS

  • 2.1. Introduction to composites
  • 2.2. Composite combinations
  • 2.3. Innovations at each step to manufacture an FRP part
  • 2.4. Main CFRP players
  • 2.5. Global forecast for carbon fiber

3. INCORPORATION OF FUNCTIONAL MATERIALS: NANOCARBON AND METALLIZATION

  • 3.1. Role of nanocarbon as additives to FRPs
  • 3.2. Routes to incorporating nanocarbon material into composites
  • 3.3. Types of nanocarbon additives: CNT
  • 3.4. CNT market and main players
  • 3.5. Trends and players for CNT sheets
  • 3.6. Types of nanocarbon additives: CNT yarns
  • 3.7. Nanocarbon as fiber sizings
  • 3.8. Types of nanocarbon additives: Graphene
  • 3.9. Types of nanocarbon additives: Graphene platelets
  • 3.10. Graphene main players
  • 3.11. Introduction to incorporating metal to polymer composites
  • 3.12. Embedded metal foils and meshes
  • 3.13. Metallized fiber and fabrics for composites - copper
  • 3.14. Metallized fiber and fabrics for composites - nickel
  • 3.15. Incorporation of metal nanowires

4. ENHANCED ELECTRICAL AND THERMAL CONDUCTIVITY

  • 4.1. Key drivers for electrical conductivity enhancements
  • 4.2. Routes to electrically conductive composites
  • 4.3. Technology adoption for electrostatic discharge of composites
  • 4.4. Lightning Strike Protection
  • 4.5. EMI shielding
  • 4.6. Nanocarbon for enhanced electrical conductivity - CNTs
  • 4.7. Nanocarbon for enhanced electrical conductivity - Graphene
  • 4.8. Enhanced thermal conductivity - application overview
  • 4.9. Composite de-icing - introduction
  • 4.10. Composite de-icing strategies - overview
  • 4.11. Composite de-icing strategies - comparison
  • 4.12. Electrothermal de-icing - fixed wing aircraft
  • 4.13. Electrothermal de-icing - helicopters
  • 4.14. Electrothermal de-icing - Nanocarbon patents
  • 4.15. Electrothermal de-icing - CNT research
  • 4.16. Electrothermal de-icing - Graphene research
  • 4.17. Electromechanical expulsion - de-icing composites
  • 4.18. Thermomechanical expulsion - de-icing composites
  • 4.19. EU projects related to De-Icing
  • 4.20. De-icing wind turbines
  • 4.21. Composite material with embedded de-icing technology market forecast
  • 4.22. Heated composites tooling
  • 4.23. Conductive composites for thermal dissipation
  • 4.24. Pitch-based carbon fiber for higher thermal conductivity
  • 4.25. Nanocomposites for enhanced thermal conductivity - CNTs
  • 4.26. Nanocomposites for enhanced thermal conductivity - graphene

5. EMBEDDED SENSORS

  • 5.1. Embedded sensors for structural health monitoring of composites - introduction
  • 5.2. Embedded sensors for structural health monitoring of composites - types
  • 5.3. Embedded sensors for structural health monitoring of composites - methods
  • 5.4. Comparison of fiber optic sensors (FOS) for composite SHM
  • 5.5. Advancements in FBG sensors for composites
  • 5.6. Coating FBG for inclusion in a composite part
  • 5.7. Advancements in distributed FOS
  • 5.8. Interrogator for FOS in composite SHM
  • 5.9. Piezoelectric embedded wafers and nano-fibres
  • 5.10. Embedded piezoelectric transducers for NDT
  • 5.11. Continuous Vacuum Monitoring for aerospace SHM
  • 5.12. Printed sensors for SHM
  • 5.13. Nanocarbon Sensors for embedded SHM
  • 5.14. Utilising the structural fibers for sensing
  • 5.15. Aerospace incorporation for SHM
  • 5.16. SHM for wind turbine blades
  • 5.17. Composite sensors for the oil & gas sector
  • 5.18. Embedding sensors in composite overwrapped pressure vessels
  • 5.19. Sensing infusion and curing in composite manufacturing
  • 5.20. Patent Analysis
  • 5.21. Market Forecast

6. ENERGY STORAGE AND HARVESTING

  • 6.1. Embedded energy storage for multifunctional composites
  • 6.2. Introduction to structural energy storage
  • 6.3. Composites with Li-ion embedded batteries
  • 6.4. Lessons from Formula E
  • 6.5. Utilisation of thin film batteries for embedded energy storage
  • 6.6. Stanford University - MES composite
  • 6.7. Carbon fiber is useable as an electrode
  • 6.8. Evolution and status of structural composite batteries
  • 6.9. Chalmers University and KTH - coated fibers
  • 6.10. Structural composite supercapacitor - main components
  • 6.11. Electrolyte options for supercapacitors
  • 6.12. Imperial College London - carbon aerogels
  • 6.13. Lamborghini Terzo Millennio - MIT research
  • 6.14. BAE Systems - composite supercapacitor and batteries
  • 6.15. Significant technology demonstrators
  • 6.16. IMDEA - Structural EDLC
  • 6.17. Metal oxide nanowires for structural supercapacitors
  • 6.18. Structural composite hybrid energy storage
  • 6.19. Key challenges still to be tackled
  • 6.20. Embedding energy storage conclusions
  • 6.21. Energy harvesting introduction
  • 6.22. Solar Skins
  • 6.23. Embedded Piezoelectric fibers
  • 6.24. Other embedded harvesters.

7. ADAPTIVE RESPONSE MECHANISMS

  • 7.1. Introduction
  • 7.2. Applications and Challenges
  • 7.3. Morphing wings timeline
  • 7.4. Introduction to modes of active morphing
  • 7.5. Piezoelectric Actuator Materials
  • 7.6. Piezoelectric actuators for morphing composites
  • 7.7. Shape Memory Alloys
  • 7.8. Electroactive polymer composites
  • 7.9. Flexsys - adaptive compliant wing
  • 7.10. Active morphing airfoil
  • 7.11. Active winglets
  • 7.12. Corrugated Morphing Skins
  • 7.13. Passive Morphing
  • 7.14. Response to UV-light
  • 7.15. Bend-Twist coupling

8. SELF-HEALING COMPOSITES

  • 8.1. Routes to "self-healing" composite parts
  • 8.2. Self-healing through rapid polymerisation
  • 8.3. Self-healing through reversible crosslinkers

9. DATA AND POWER TRANSMISSION

  • 9.1. Data and power transmission - introduction
  • 9.2. Utilising surface waves for internal data transmission
  • 9.3. Coated carbon fibers for data transmission
  • 9.4. Horizontally aligned CNTs for data transmission
  • 9.5. Embedded wireless sensor networks

10. FULLY-INTEGRATED 3D ELECTRONIC SYSTEMS IN COMPOSITE PARTS

  • 10.1. What is the end goal?
  • 10.2. What is in-mold electronics (IME)?
  • 10.3. IME: 3D friendly process for circuit making
  • 10.4. Molding electronics in 3D shaped composites
  • 10.5. 3D Printing of functional fibers
  • 10.6. 3D Printing of composites with embedded sensors - generative design and SHM
  • 10.7. 3D Printing of Structural Electronics

11. COMPANY PROFILES

  • 11.1. Acellent Technologies
  • 11.2. Bekaert
  • 11.3. Continuous Composites
  • 11.4. DexMat
  • 11.5. Imperial College Composites Centre
  • 11.6. Inca Fiber
  • 11.7. N12 Technologies
  • 11.8. Tortech Nano Fiber
  • 11.9. TWI
  • 11.10. Villinger R&D
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.